
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

ppSAT: Towards Two-Party Private SAT Solving
Ning Luo, Samuel Judson, Timos Antonopoulos, and Ruzica Piskac,

Yale University; Xiao Wang, Northwestern University
https://www.usenix.org/conference/usenixsecurity22/presentation/luo

ppSAT: Towards Two-Party Private SAT Solving

Ning Luo
Yale University

Samuel Judson
Yale University

Timos Antonopoulos
Yale University

Ruzica Piskac
Yale University

Xiao Wang
Northwestern University

Abstract
We design and implement a privacy-preserving Boolean sat-
isfiability (ppSAT) solver, which allows mutually distrustful
parties to evaluate the conjunction of their input formulas
while maintaining privacy. We first define a family of secu-
rity guarantees reconcilable with the (known) exponential
complexity of SAT solving, and then construct an oblivious
variant of the classic DPLL algorithm which can be integrated
with existing secure two-party computation (2PC) techniques.
We further observe that most known SAT solving heuristics
are unsuitable for 2PC, as they are highly data-dependent in
order to minimize the number of exploration steps. Faced
with how best to trade off between the number of steps and
the cost of obliviously executing each one, we design three
efficient oblivious heuristics, one deterministic and two ran-
domized. As a result of this effort we are able to evaluate
our ppSAT solver on small but practical instances arising
from the haplotype inference problem in bioinformatics. We
conclude by looking towards future directions for making
ppSAT solving more practical, most especially the integration
of conflict-driven clause learning (CDCL).

1 Introduction
Boolean satisfiability (SAT) is a foundational problem in com-
puter science [11, 13, 14, 32]. SAT asks whether there is a
variable assignment (or model, M) that makes a Boolean
propositional formula φ evaluate to true. A SAT solver is a
tool that takes an instance φ as input and checks its satisfia-
bility; solvers can also output a model when one exists. The
SAT problem is NP-complete and widely believed to require
at least superpolynomial, if not exponential, time [31, 54].
Most state-of-the-art SAT solvers are in fact enhancements
of the worst-case exponential branch and backtrack algo-
rithm of Davis-Putnam-Logemann-Loveland (DPLL) [13, 14].
Nonetheless, well-engineered modern solvers such as Kissat,
the basis for the winner of the 2021 SAT competition [2],
can efficiently resolve large and complex SAT instances con-
taining tens of millions of variables and clauses [2, 6, 7, 20,
26, 49, 55, 56, 57], arising from within program verifica-

tion [24, 35, 48], networks [5, 39, 40], and numerous other
domains [41, 42, 56].

All existing SAT solvers are designed for execution by a
single party possessing complete information on φ.1 However,
in certain settings SAT instances arise as the conjunction of
inputs from two or more distinct parties, i.e., φ ≡ ∧

i∈[k] φi
where party Pi formulates φi independently of φ j for all j 6= i.
If the Pi are mutually distrustful and their inputs are valuable,
privileged, or legally encumbered – and so must be kept pri-
vate from the other parties – then those solvers are no longer
applicable without a trusted intermediary or secure execution
environment to run them. In settings without recourse to such
trust assumptions, secure computation techniques are instead
required to privately resolve SAT instances. Our work com-
bines recent advancements in oblivious algorithm design [61]
with classic techniques for SAT solving [13, 14] and secure
two-party/multiparty computation (2PC) [62] to develop a
solver for privacy-preserving Boolean satisfiability, or ppSAT.
We also consider the promise and challenge of augmenting
this secure computation with differential privacy (DP) [17, 18]
to trade off privacy and efficiency, following a strand of recent
research [23, 28].

SAT solvers take as input Boolean formulas in conjunctive
(also known as clausal) normal form (CNF). We focus on
the setting with two parties P0 and P1 and a Boolean formula
φ ≡ φ0∧φ1∧φpub such that φb is the private input of Pb for
b∈ {0, 1} and φpub is an optional public input. This allows us
to use the most concretely efficient designs and software for
secure computation available. Also, the general architecture
and optimizations of our construction should be extendable
to support more than two parties given suitable secure com-
putation primitives. We assume that P0 and P1 have agreed
on the meaning of a set of n variables v1, . . . , vn. A two-party
ppSAT solver takes private inputs φ0 and φ1 from P0 and P1
respectively, where φb is over the vi with |φb| = mb clauses.
The solver should correctly output a bit s = (∃M . M |= φ),
and optionally output a satisfying M when possible. Intu-

1Prior work does consider parallel/distributed SAT solving, but only where
that single party coordinates networked computing resources [47].

USENIX Association 31st USENIX Security Symposium 2983

itively, we desire a security guarantee that Pb learns nothing
more about φ1−b than is implied by s, φb, |φ1−b|, (when input)
φpub, and (when output) M .2 In this paper we design and
implement a sound ppSAT solver that meets a slightly relaxed
security guarantee, necessary due to the exponential worst-
case runtime of our SAT decision procedure. We introduce
this weakening formally in §3 and Appendix A.

A Motivating Example. In bioinformatics, inference of hap-
lotypes can uncover genetic information valuable to biolog-
ical research and medical treatment. Haplotypes are DNA
sequences which originate from a single parent, and their
information can aid studies on, e.g., genetic risk factors for
cardiovascular disease [53] or the effective use of medica-
tions [22]. However, current genetic sequencing technology
usually only resolves genotypes, which are mixtures of haplo-
types from both parents. Given a set of genotypes G drawn
from a population, the process of inferring a set of haplo-
types H whose elements explain every g ∈ G (i.e., that are
plausibly the biologically-realized haplotypes in that popu-
lation) is called haplotype inference [22, 25]. One compu-
tational approach is haplotype inference by pure parsimony
(HIPP) [22, 25]. HIPP finds a minimally-sized H to explain
an input G, and is known to be APX-hard [34].

Formally, (sections of) both haplotypes and genotypes
may be expressed as strings of length `, with a haplotype
h ∈ {0, 1}` and a genotype g ∈ {0, 1, 2}`. Given a pair of
haplotypes hs = (h0, h1) and a genotype g, the predicate

explainI(hs, g) ⇐⇒
∀i ∈ [`]. (h0

i = h1
i = gi)∨ (h0

i 6= h1
i ∧gi = 2)

is true iff g can be explained as a mixture of h0 and h1. A set
of haplotypes H explains a set of genotypes G if every g ∈ G
can be obtained by pairing two h0, h1 ∈ H:

explain(H, G) ⇐⇒ ∀g ∈ G. ∃hs ∈ H×H. explainI(hs,g).

For example, H = {010, 110, 001} explains G = {210, 022},
as (010, 110) explains 210 while (010, 001) explains 022. It
is straightforward to see that a minimally-sized H has 2 ≤
|H| ≤ 2|G|.

SHIPs [41, 42] solves the HIPP problem for genotype
set G by invoking a SAT solver to find an H which makes
explain(H, G) true. Specifically, for a conjectured size of
the haplotype set r ∈ [2, 2|G|], the SHIPs algorithm converts
explain(H,G)∧|H|= r into a CNF formula φ where the ele-
ments of H are represented by r ·` variables. The satisfiability
of φ is then checked by a SAT solver, and if true the resul-
tant model M encodes H. To find a minimal H, SHIPs starts
with r = 2 and increments it until φ is satisfiable (as a model
necessarily exists when r = 2|G|).
2As is common in 2PC it is difficult for P1−b to hide the length |φ1−b|. When
necessary SAT instances can be padded out with tautological clauses.

Genetic information such as genotypes can be expensive
to obtain, can carry significant privacy risk, and/or can be en-
cumbered with legal and regulatory protections. Commercial
and academic researchers who collect and analyze genotype
data often have strong incentives to control access to it [58].
Anonymization and summarization of genetic data is not a
panacea, to the extent those notions are technically and legally
meaningful at all [50]. Homer et al.’s attack [29, 59] shows
auxillary information paired with the genotype of a target
may be used to identify their participation in a genome-wide
association study (GWAS). If two parties respectively hold
databases of genotypes G0 and G1 and want to run haplotype
inference over G = G0 ∪G1 without exposing their data to
the other participant, current technologies for HIPP require
trading off the privacy of that data against the economic and
social value of the research. Even when legal infrastructure
can provide and enforce privacy guarantees to allow otherwise
reticent parties to share data, the time and cost of lawyers and
negotiations and contracts may very well outpace even the
most expensive secure computations.

The application of SHIPs through a ppSAT solver could
help mitigate all of this tension. Up to a minor optimization
not required for correctness, the CNF formula φ encoding
explain(H, G)∧|H|= r is naturally composed of (i) a public
φpub encoding |H|= r; and (ii) two independent φb each de-
rived only from Gb, such that M |= φ iff M |= φ0∧φ1∧φpub.
As such, each party Pb can construct φb locally, at which point
they may jointly execute the ppSAT solver over φ. Solving
this formula infers an H that explains G while keeping G0 and
G1 private, up to their cardinalities. This approach may not
completely mitigate privacy concerns, as H is itself (inferred)
genetic data which may be, e.g. correlated with observable
medical conditions and the community of origin of the indi-
viduals who provided G. However, as haplotypes are far less
diverse within a population, their exposure may carry less risk
than that of the underlying genotypes [12, 51].

Naive Approaches. While to the best of our knowledge no
specific study of privacy-preserving SAT solving exists in the
literature, both basic secure computation primitives and gen-
eral completeness results can be used to naively instantiate
ppSAT solvers. One immediate approach is to use private set
disjointedness (PSD) testing [19, 33]. Each Pb could enumer-
ate the set Mb = {Mi |Mi |= φb} of satisfying assignments
for their formula, and then the parties could jointly execute a
PSD protocol to check whether |M0∩M1|> 0. A model M
could be recovered by replacing PSD with private set intersec-
tion (PSI) [52]. However, |Mb| can be worst-case exponential
in |φb|, is often very large in concrete terms [3, 4], and is
leaked by this approach, as is |M0∩M1| when using PSI. In
general this enumeration is #P-hard [7], so straightforward
application of PSD/PSI will likely be impractical.

Another naive approach is to raise a preexisting SAT solver
to a ppSAT solver through a generic 2PC compiler. However,
current such compilers (often bluntly) apply techniques such

2984 31st USENIX Security Symposium USENIX Association

as the padding out of loops and linear scan array lookups to
create data-oblivious execution paths [27], which will likely
be impractical given the amount of state management and
data-dependent processing of known SAT decision proce-
dures. Adoption of RAM-based 2PC methods [21] is more
promising, but generic use of their compilers is for the mo-
ment unreasonably expensive.

1.1 Notation
We denote the two parties as P0 and P1, whose inputs are
CNF formulas φ0 and φ1 respectively. When applicable we
represent a public component of the formula, known to both
parties, by φpub. The set of variables in φ is V = {v1, . . . , vn},
so |V | = n. The number of clauses of an input subformula
is |φb|= mb, so that |φ|= m = m0 +m1 +mpub. Each clause
is composed of the logical disjunction of literals, each of
which is either vi or ¬vi for vi ∈V . We compute satisfiability
over φ ≡ φ0∧φ1∧φpub where the last term appears only as
appropriate. A model M ∈ {0, 1}n is a function M : V →
{0, 1} mapping variables to truth values. When referring to
the satisfiablity value s output by the ppSAT solver, we will
often represent s = 0 (resp. s = 1) by UNSAT (resp. SAT), i.e.,
UNSAT indicates that there is no satisfying model for φ, while
SAT indicates the opposite. In practice s will not necessarily
be a bit, as we let s =−1 indicate that the satisfiability of φ

is unknown. We notate access to the ith element in x by x[i],
and use ei to represent the unit vector such that ei[i] = 1 and
ei[j] = 0 for all j 6= i. Finally, the notation Π(a ‖ b;c) denotes
the execution of a two-party protocol Π with private inputs a
and b and public input c.

1.2 Challenges and Contributions
We found constructing a ppSAT solver to require addressing
three main challenges.

Data-Oblivious Execution. All 2PC constructions use data-
oblivious execution patterns to prevent information leakage.
Designing an oblivious version of a SAT decision procedure
such as DPLL is difficult as known algorithms and their un-
derlying data structures are highly data-dependent, even for
the most basic of operations. For example, such algorithms
assume constant-time methods for checking and modifying
the inclusion of literals within clauses [45]. Any design must
address how to represent clauses so as to allow as efficient
oblivious lookup and alteration as possible. DPLL-based SAT
solvers also guess and backtrack frequently, implicitly build-
ing a search tree dependent upon the input formula. A ppSAT
solver must somehow obfuscate the structure of these trees,
which requires hiding when guesses and backtracking occur.

Our approach to this challenge is to use a pair of binary
matrices (P, N) to encode the formula. In Appendix B we
also briefly present a specialized approach for when every
clause in φ has far fewer than n variables. In general we
only ever access individual columns (i.e., clauses) of these
matrices in isolation, and so often describe them as vectors of

vectors instead of as matrices. When Pi j = Pj[i] = 1 variable
vi appears in the j-th clause, while Ni j = N j[i] = 1 indicates
¬vi does; the j-th column vectors in P and N together encode
the j-th clause.

We also use a pair of binary vectors (ind+, ind−) to en-
code literals: vi is encoded as (ei, 0n), and ¬vi by (0n, ei).
Negation of a literal is done by just swapping (ind+, ind−)
into (ind−, ind+). This representation enables oblivious check-
ing of the inclusion of a literal in a clause through a linear-
time cascade. We also use the same two-vector encoding for
variable assignments. Simplifying clauses is performed by
updating P and N according to a comparison with an assign-
ment a = (ind+, ind−). Finally, we adopt an oblivious stack
for guessing and backtracking, in order to hide the search tree.

Heuristics for Guessing. Designing oblivious variants of
DPLL subroutines often requires no more than one-to-one
translation using techniques such as linear scans and oblivious
data structures. However, certain components require more
craft and care, most especially the decision heuristics. DPLL
searches the space of variable assignments by (i) taking forced
choices when possible, (ii) using heuristics to guide unforced
choices, and then (iii) unwinding these choices to backtrack
when necessary. Much of the unreasonable effectiveness of
modern SAT solvers stems from intelligent heuristics [20].
However, these heuristics often rely on data accesses or arith-
metic computations that are expensive or impractical in 2PC.
For example, a classic heuristic is to just randomly assign
a randomly chosen variable that does not yet have a valua-
tion [13]. With constant-time lookups and assignments this is
easy, as the set of unassigned literals can efficiently be tracked
and randomly sampled from by the SAT solver. However, even
this simple heuristic is hard to realize within a ppSAT solver.
Nonetheless, we design and implement this and one other
randomized guessing heuristic, along with a further determin-
istic one. Though basic they provide a sound foundation. In
§4.3 we discuss potential ways to integrate more powerful
heuristics, such as conflict-driven clause learning (CDCL)
[49, 55], an essential component of modern solvers which
preemptively closes off impossible paths to drastically reduce
the effective size of the search tree.

Our deterministic heuristic simply picks the literal with the
greatest frequency, which is straightforward to realize with
our matrix encoding by counting and comparing. As for ran-
domized heuristics, they require sampling from a distribution
dependent on the formula which must be kept secret. We
design a private and efficient method for sampling `∗ ←D
{`1, · · · , `k} for any distribution D that can be expressed as
a list of integers {w1, . . . ,wk} such that Pr[`∗ = `i] =

wi
∑ j w j

,
which is closely related to prior work in the literature [9].
Using this technique we can instantiate a randomized heuris-
tic that selects an unassigned literal with, e.g., probability
uniform or proportional to its frequency.

Leakage vs. Efficiency. Recall that our natural security re-

USENIX Association 31st USENIX Security Symposium 2985

quirement is that Pb learns nothing more about φ1−b than is
implied by s, φb, |φ1−b|, (when input) φpub, and (when output)
M . However, if formalized such a definition would be slightly
too strong to be practical. To prevent information leakage
from the runtime of the ppSAT solver, meeting this guarantee
would require it to always run in time T (λ, n, m) for security
parameter λ and deterministic function T . Since all known
SAT decision procedures have worst-case runtime bounds
O(g(n)) for g(n)> (1+ k)n for constant k > 0 [7], complete-
ness would require T be exponential in its inputs. This behav-
ior would both (i) be impractical for all but very small n; and
(ii) likely conflict with assumptions underlying the security
arguments for the 2PC primitives we need [38, 61].

As such we will sacrifice completeness. Instead, we as-
sume the parties agree on some polynomial T̃ (x, y, z) and set
T̃ (λ, n, m) = τλ,n,m as the upper-bound on the runtime of the
solver, based, e.g., on an economic or social analysis of the
value of solving the instance for that concrete cost. This poly-
nomial upper-bound mitigates our concern about the security
of our underlying cryptographic primitives. The parties can
then agree to either (i) run for τλ,n,m steps always, aborting if
that is insufficient to resolve the instance, or (ii) to terminate
upon resolution at time τ≤ τλ,n,m, with an accordant risk of
information leakage.

This tradeoff between the most efficient possible execution
of the ppSAT solver and the greatest possible privacy must
be jointly agreed upon by the Pb. We will generally focus on
the case of (ii), and discuss how techniques from differential
privacy (DP) [17, 18] may be used to add calibrated noise
to reduce the informational content of this leakage without
overly extending the runtime of the solver. We formalize
security definitions for (i) and (ii) without differential privacy
in §3 and Appendix A, and the latter with DP in Appendix D.
All three of these guarantees are weaker than the natural
security definition, since the adversary can learn additional
information in the form of one of (i) τ, (ii) τ with added
noise, or (iii) that τλ,n,m steps were insufficient to resolve the
instance.

2 Preliminaries

2.1 Overview of DPLL
To illustrate how the DPLL procedure works we walk through
its execution on an example. Consider the following Boolean
formula with four variables φ(0)≡ (v1∨v2)∧(v2∨¬v3∨v4)∧
(¬v1∨¬v2)∧ (¬v1∨¬v3∨¬v4)∧ (v1). The procedure itera-
tively builds a model for the formula by repeating a sequence
of steps. As the input formula is in CNF its model must be a
model for (i.e., satisfy) each of its clauses.

We start with the empty model, M = ∅. The first step,
UNITSEARCH, searches for a unit clause: a clause consisting
of a single literal. Assigning a truth value which makes that
literal true is the only way to find a model for the formula.
In our example the only unit clause is (v1), the last clause.

We add its satisfying assignment to the model: M = {v1 =
1}. This model is not only a model for that last clause, but
for the first clause as well; it is a model for every clause
where v1 appears as a positive literal. This observation is the
basis for the PROPAGATION step, which is run every time a
new element is added to the model. The PROPAGATION step
removes that element from the formula: all clauses where v1
appears positively are removed, while in the remaining clauses
we can safely remove the negated v1 variable as ¬v1 evaluates
to false under M , and false is a neutral element in disjunctions.
In our particular example it means that we are left with the
formula φ(1) ≡ (v2∨¬v3∨ v4)∧ (¬v2)∧ (¬v3∨¬v4).

The procedure now again executes the UNITSEARCH step,
finding the unit clause (¬v2). In general, after every UNIT-
SEARCH step which finds a unit clause `, the procedure exe-
cutes the CHECK step, which checks that ¬` is not also a unit
clause. The CHECK step does not find any such conflict here,
so we add ¬v2 to the model: M = {v1 = 1,v2 = 0}.

After the PROPAGATION step we are left with two clauses:
φ(2) ≡ (¬v3 ∨ v4)∧ (¬v3 ∨¬v4), and running UNITSEARCH
does not find a unit clause. When this occurs we pick a vari-
able, guess its value, and then add that to the model. This
is a DECISION step. For example, we can add v3 = 1 to the
model: M = {v1 = 1,v2 = 0,vd

3 = 1}. Note that v3 is anno-
tated with d, indicating that it is a decision variable. Its value
was guessed and not inferred. We then run the PROPAGATION
step, which results in a new formula φ(3) ≡ (v4)∧ (¬v4).

We again run the UNITSEARCH step on φ(3): now (v4) is a
unit clause. However, running the CHECK step will find that
(¬v4) is also a unit clause. Therefore we need to backtrack.
Backtracking is possible only when there is a decision literal
in the model. The BACKTRACK step retreats to the point in
the procedure just before the last decision variable was added.
Instead, we add its negation to the model and remove the d
annotation. It is now inferred that the negated value has to be
in the model, otherwise we would derive a contradiction.

Running the BACKTRACK step results in the model M =
{v1 = 1,v2 = 0,v3 = 0}. We apply PROPAGATION on φ(2)

and the resulting formula is empty, i.e., M is a model for
all clauses in the original formula, which means that φ(0) is
satisfiable and M is its model. Note that v4 can have any
value. When the CHECK step finds a contradiction and no
prior guesses can be undone, DPLL terminates and reports
that the original input formula is unsatisfiable.

2.2 Cryptographic Preliminaries
Basic Primitives. We use standard techniques for 2PC,
wherein P0 and P1 employ binary garbled circuits (GC) built
from oblivious transfer (OT) and encryption primitives to
jointly compute the sequence of functionalities which make
up our ppSAT solver. Our design guarantees the order of these
functionalities is fixed (up to the length of the execution), and
that the access patterns over all intermediary values are data-
oblivious, i.e., either fixed or randomized independently of

2986 31st USENIX Security Symposium USENIX Association

the private protocol inputs (up to their length). Those interme-
diary values are then stored at rest distributed between the Pb
with information-theoretic security. At the end of the protocol,
the final outputs are revealed to both parties.
Oblivious Stack. An oblivious stack data structure allows
for conditional operations, which take a secret Boolean value
that dictates whether the operation is actually performed or
simulated through a dummy execution [61]. We will rely on
the following operations, where ⊥ and ⊥′ are arbitrary but
distinguishable special symbols:

• ObStack← stack() : initialize an oblivious stack;

• (·)← ObStack.CondPush(b, x) : (conditionally) push ele-
ment x to the oblivious stack if b = 1, else skip.

• (x)← ObStack.CondPop(b) : (conditionally) pop and re-
turn the top element x if b = 1, else return ⊥. If b = 1 and
the stack is empty, fail and output ⊥′.

3 Overview
As noted, a complete ppSAT solver can run for exponential
time, which violates standard 2PC security definitions. In
this section we formulate a definition for which meaningful
security is practically achievable. We then give a high-level
overview of our solver, before presenting it in detail in §4.

3.1 Formalizing ppSAT Security
A ppSAT solver is a two-party secure computation (2PC)
protocol executed by P0 and P1. We operate in the semi-honest
model, i.e., we consider an adversarial Pb which attempts to
learn private information about φ1−b, but does not otherwise
deviate from the protocol. We formalize security under the
simulation paradigm [10]. The view of party Pb is an object
containing all information known to it at the conclusion of a
protocol Π: its private and the public inputs, every random
coin flip it samples, every message it receives from P1−b, every
intermediary value it computes, and the output. We consider
the protocol secure if there exists a simulator Sim1−b such
that no efficient algorithm A can distinguish between the view
of Pb when interacting with Sim1−b in an ideal world vs. with
P1−b in the real world. The simulator is given only (i) the
private inputs of Pb, (ii) the public inputs, and (iii) the output
of the protocol. Since the view of Pb in the ideal world cannot
directly contain any information about φ1−b by definition, this
indistinguishability implies an adversarial Pb cannot learn
more about it than what is implied by the output in the real
world either.

However, standard computational security definitions for
simulation are not blindly applicable to ppSAT solving as they
require all parties run in probabilistic-polynomial time (PPT),
while a complete solver may require exponential time with
non-negligible probability. As such, to retain these definitions
we choose to yield completeness for our solver and force poly-
nomial runtimes, at the further cost of information leakage. In

Appendix A we rigorously formalize four different variants
of a simulation-based security definition for ppSAT solving.
Each requires some leakage, but how much depends on (i)
whether the running time is leaked to allow early termination;
and (ii) whether a model is output. We will primarily focus
on a two-party-exact-time-revealing solver (2p-etr-solver),
which reveals only (i) and so is the most efficient and concise
formulation. We also discuss a further modification of the
definition permitting the use of differential privacy to hide
some of the information leakage in Appendix D.

3.2 Oblivious DPLL
Our ppSAT solver consists of a sequence of giant steps im-
plementing an oblivious variant of the DPLL procedure. For
concision we walk through solving without M , and briefly
discuss its addition at the end. At initialization the solver sets
φ(0)← φ and a(0)←⊥, where the latter is a “dummy value”
encoded as a pair (0n, 0n). As shown in Figure 1, the t-th
giant step takes as input a formula φ(t−1) and an assignment
a(t−1). Each giant step either returns SAT/UNSAT or outputs
an updated formula φ(t) and a single assignment a(t) for the
next giant step to consume.

A giant step sequentially executes oblivious variants of
the five core small step algorithms of the DPLL procedure:
UNITSEARCH, DECISION, CHECK, BACKTRACK, and PROP-
AGATION. First, UNITSEARCH and then DECISION output
an assignment, a(t)unit and a(t)dec respectively. The UNITSEARCH

routine scans φ(t−1) and (when one exists) finds a unit clause.
If such a clause is found then a(t)unit encodes its single literal as
an assignment, otherwise it encodes the dummy value ⊥. The
DECISION routine invokes a chosen heuristic (usually, but not
necessarily, fixed for the entire execution) and obtains a(t)dec as
a guess. If a(t−1) = a(t)unit =⊥ then (φ(t−1), a(t)dec) is pushed onto
the oblivious stack. Otherwise a dummy push operation is per-
formed. The multiplexer Mux0 then selects a non-dummy as-
signment according to the priority a(t−1) > a(t)unit > a(t)dec. Note
that a(t)dec 6=⊥ always. The selected assignment, denoted a(t)sel,
and φ(t−1) are then taken by the CHECK routine as input.

This routine is the only possible point when the procedure
can terminate and return SAT/UNSAT. For the moment we
assume the procedure terminates immediately when possible,
and discuss alternative behaviors later. A CNF formula con-
flicts with an assignment if it leads to an unsatisfiable clause.
For input φ(t−1) and assignment a(t)sel there are four possible
cases for CHECK, PROPAGATION, and BACKTRACK:

1. The CHECK subroutine finds that φ(t−1) is satisfied and
returns SAT.

2. The CHECK subroutine finds that φ(t−1) conflicts with a(t)sel
and the stack is empty, and so returns UNSAT.

3. No conflict occurs, so CHECK passes φ(t−1) and a(t)sel to
the PROPAGATION and BACKTRACK routines. The PROP-

USENIX Association 31st USENIX Security Symposium 2987

Unit Literal Search

Backtrack

Oblivious stack
Check

Propagation

Decision

One Giant Step

Heuristics

Figure 1: The structure of a giant step and its role in our ppSAT
solver, demonstrating the high-level design given in §3. Dashed
arrows indicate potential dummy return values.

AGATION routine simplifies φ(t−1) to φprop by eliminating
both clauses which have been satisfied by a(t)sel and literals
¬a(t)sel. The Mux1 multiplexer will then set φ(t)← φprop and
a(t)←⊥ as the output of the giant step. The BACKTRACK
routine will execute a dummy pop operation.

4. A conflict occurs and the stack is not empty. The BACK-
TRACK routine pops a formula φback = φ(t

′) for some
t ′ < t− 1 and its associated aback from the stack. It then
sets aback by swapping ind− and ind+ from aback. The Mux1
multiplexer will then select φ(t)← φback and a(t)← aback

as the output of the giant step. The output of the PROPA-
GATION routine will be ignored.

When the model M is desired as output this design is easily
modified to continually update its state during the PROPAGA-
TION routine, as well as save that state within and retrieve it
from the stack during backtracking.

4 A ppSAT Solver
In this section we formalize the algorithm sketched in §3 as
the basis for our ppSAT solver protocol. We begin by defining
a pair of abstract data structures for a formula φ and its con-
stituent clauses, and then describe an instantiation of these ob-
jects and their operations using bit-vectors. These operations
are all data-oblivious and include most of the functionalities
that will be computed using garbled circuits when the overall
design is raised into a secure computation protocol. Finally,
we describe how our ppSAT solver is structured as a data-
oblivious sequence of these operations. For concision and
clarity we sometimes describe the solver with data-dependent

branching, but all conditions are simple checks of Boolean
variables which can be merged into the operations they guard.

4.1 Data Structures for CNF Formulas
Let β be an integer and L = {`1, . . . , `2n} be a set of literals. A
clause is a subset C⊆ L for which |C| ≤ β and no two distinct
literals reference the same underlying variable – implying
that β≤ n is the maximum clause length in φ. This parameter
allows us to design different instantiations for when it is public
knowledge that β≈ n, as opposed to when, e.g., β� n. We
require three operations over clauses:

• C.unit(): returns a bit indicating whether |C|= 1.

• C.contain(`): returns a bit indicating whether ` ∈C.

• C.remove(a): updates C to C \{a} in place.

A formula φ is composed of a set of clauses {C1, · · · ,Cm}, for
which we also need two operations:

• φ.empty() : returns a bit indicating whether φ =∅.

• φ.remove(C j) : updates φ to φ\{C j} in place.

Instantiating these abstract data structures for a given β re-
quires both state encodings and supporting these methods.

Instantiating the ADS for β ≈ n. Recall that ei is the unit
vector where ei[i] = 1 and ei[j] = 0 for all j 6= i. A literal `
is represented by the pairing of a unit vector and zero vec-
tor (ind+, ind−). A positive variable vi is encoded as (ei, 0n),
while its negation ¬vi is encoded as (0n, ei). A dummy as-
signment ⊥ is represented by (0n, 0n). The representation of
variables cooperates with the encoding of clauses (see next
paragraph) so that operations over them can be implemented
using only linear scans.

A clause C j ∈ φ is represented by an integer nL and the pair
of vectors (Pj, N j) such that

(Pj[i], N j[i]) =

(1,0) if vi appears in C j

(0,1) if ¬vi appears in C j

(0,0) o.w.

The integer nL is used to track the number of literals in the
clause. The implementation of the three clausal operations are
given in Algorithm 1. Determining whether C j is a unit clause
can be implemented by checking whether nL = 1. To imple-
ment contain we use that the structure of the clause and literal
vectors provides that `= v∈C j iff

n∨
i=1

(Pj[i]∧ ind+[i]) = 1 and

similarly for ` = ¬v using N j and ind−. To remove a literal
vi (resp. ¬vi) from C j due to an assignment requires setting
Pj[i] = 0 (resp. N j[i] = 0) and deducting from nL. Given the
indicating assignment a, the former is the same as updating
Pj[i]← Pj[i]∧ (Pj[i]⊕ ind+[i]) for each i ∈ [n], and similarly
over N j and ind−.

2988 31st USENIX Security Symposium USENIX Association

Algorithm 1: Clausal Algorithms when β≈ n

1 Function C j.unit():
2 return (nL = 1)
3 Function C j.contain(`= (ind+, ind−)):
4 b← 0
5 for i← 1 to n do
6 b← b∨ (Pj[i]∧ ind+[i])∨ (N j[i]∧ ind−[i])
7 return b
8 Function C j.remove(a = (ind+, ind−)):
9 if C j.contain (a) then

10 nL← nL−1
11 for i ∈ [n] do
12 Pj[i]← Pj[i]∧ (Pj[i]⊕ ind+[i])
13 N j[i]← N j[i]∧ (N j[i]⊕ ind−[i])

A formula φ is encoded as matrices (P, N) where the
jth column of P is Pj and of N is N j, as well as a vector
isAlive ∈ {0, 1}m whose jth entry indicates whether C j has
been removed from the formula. The φ.remove(C) function-
ality can be implemented by setting isAlive[j] = 0 during a
linear scan, while φ.empty() by checking whether isAlive = 0n.
We omit their formal descriptions due to their simplicity.

Alternate Approaches. We primarily focus on the above ap-
proach, as it is a generic solution applicable to every possible
ppSAT instance. We also consider an alternate instantiation
for when the maximum number of literals in a clause is much
smaller than n (i.e., β� n) in Appendix B.

Operations on clauses can in theory be instantiated via
RAM-model secure computation [21], which requires running
an ORAM client algorithm in MPC. This could potentially
reduce the asymptotic cost of the ADS operations to O(log2 n)
from O(n).3 We can empirically compare our bit-vector based
solution with the most practically efficient ORAM secure
computation [16]. To read or write a bit from a n-bit vector
the linear scan circuit contains exactly 2n− 1 AND gates.
As a result, the crossover point (conservatively) occurs when
n≈ 217, where our circuit takes about 0.13s and the ORAM-
based solution takes about 0.2s.

4.2 Data-Oblivious ppSAT Solving
Algorithm 2 formally presents the algorithmic structure of
our ppSAT solver. We only provide a full description of our
2p-etr-solver for brevity, which can be extended to support
M as described in §3, and raised into a secure 2PC protocol
using the standard techniques referenced in §2. Finally, we

3Note that although the best ORAM [1] can incur only a O(logn) overhead,
that requires an underlying data block of at least logn bits. In our case, each
data block is a single bit and thus the best available requires O(log2 n). We
are not aware of any ORAM designed specifically for bit accesses, which
may be a promising line of future work to increase its efficacy in this and
other secure computations over bit-vectors.

abuse notation by considering τ and τλ,n,m to track and up-
per bound respectively the number of giant steps. Their true
values are some constant factor (representing the number of
computational steps within a giant step) of how we use them
algorithmically.

Every giant step (Lines 13-24 and 3-12 across two loop
iterations) starts with a formula φ and an assignment a, and
either passes a new formula and assignment to the next giant
step or terminates. The flag bconflict indicates a conflict; when
one (and therefore backtracking) occurred in the prior giant
step then bconflict = 1.

The solver first executes UNITSEARCH, sets bunit to indi-
cate its success, and if successful returns the unit literal as
an assignment aunit. Then the solver invokes the heuristic
in DECISION and receives a branching assignment adec. If
bconflict = 1 the negation of aback and φdec from the previous
giant step are taken as the input of CHECK (Lines 21-23 and
4). Otherwise, either the output of UNITSEARCH or the output
of DECISION will be used depending on bunit (Lines 16-19
and 4).

The CHECK routine resolves the application of assignment
a to φ. There are three possibilities, each corresponding to a
value of σ:

1. σ = 0: φ is satisfied after applying a. Then CHECK termi-
nates the procedure and outputs SAT (Line 6);

2. σ = 1: φ contains a unit clause with the negation of a
(Line 7). The solver then pops the top element (if any) off
the stack (Line 8). If the stack is empty the solver will
terminate and output UNSAT (Lines 9-10). Otherwise,
bconflict is set to 1 and the solver backtracks, ultimately
recovering the assignment aback and formula φback for
the next giant step. The result of PROPAGATION will be
ignored; or

3. σ = 2: the formula is neither SAT nor in conflict after
applying a. The PROPAGATION routine simplifies φ to
φprop using a and passes the simplified formula to the next
giant step (Line 12).

The behavior of BACKTRACK is directly integrated into Al-
gorithm 2, while DECISION is the focus of §4.3. Next, we
describe the remaining UNITSEARCH, CHECK, and PROPA-
GATION routes in detail – due to space constraints we give
their formal definitions in Appendix C.

UNITSEARCH (Algorithm 8): The UNITSEARCH routine finds
a unit clause in the current formula φ when one exists, and
outputs a bit b and an assignment a. If no unit clause exists in
φ then b = 0, else b = 1 and a corresponds to its single literal.
To find the encoding of that literal to set a, we need to locate
the clause C j such that C j.unit() = 1. We achieve this through
a linear scan of all the clauses, setting b← 1 and a←C j once
we find a suitable output (Lines 2-5).4

4We slightly abuse notation here for readability, as not all instantiations

USENIX Association 31st USENIX Security Symposium 2989

CHECK (Algorithm 9): The CHECK routine determines
whether formula φ is SAT, and if not whether the assignment
a causes a conflict or whether the resultant φ remains viable
but unproven. It returns σ ∈ {0, 1, 2}. The three cases are (i)
σ = 0, indicating that φ is satisfied; (ii) σ = 1, indicating that
φ conflicts with a; and (iii) σ = 2, otherwise. The routine uses
Boolean variables b0 and b1 to track if φ is SAT or conflicts
with a respectively. The φ.empty operation resolves b0 (Line
1). A clause conflicts with a if it only contains ¬a. The rou-
tine scans over all clauses, and sets b1← 1 if any is unit and
conflicts with the assignment (Lines 3-5). If neither b0 nor b1
is set to 1, the routine returns 2 to indicate that φ is still viable
under a.

PROPAGATION (Algorithm 10): The PROPAGATION routine
simplifies φ by eliminating clauses containing a literal ` with
identical indicators to the assignment a. Additionally, ¬` is
removed from any clause containing it. So, during propagation
there are three types of clauses C ∈ φ, those for which: (i)
¬a= `∈C, in which case C.remove(¬a) is executed (Line 7);
(ii) a = ` ∈C, so C is satisfied and φ.remove(C) is therefore
invoked (Line 5); or (iii) clause C contains neither `= a nor
`= ¬a, and so is left unchanged.

4.3 ppSAT Decision Heuristics
The final component of our solver is the DECISION routine,
which is not a single functionality but rather a family of possi-
ble procedures for guessing a variable assignment. Designing
such techniques is historically a very rich area of SAT re-
search [7, 20, 46], though many of these constructions are not
naturally implementable through oblivious computation and
2PC primitives. For this initial work we focus on three heuris-
tics: (i) the deterministic dynamic largest independent sum
(DLIS) heuristic, where we choose the most common literal as
the assignment, (ii) the randomized (RAND) heuristic where
we make a uniform choice over both variable and assignment,
and (iii) a weighted randomized heuristic (Weighted-RAND),
where the choice of literal is weighted by frequency. These
are all relatively simple but still useful, and implementing
their many variants along with more complex heuristics is a
promising avenue for future work which we discuss at the end
of the section.

Note that for brevity we do not provide the full DECISION
routine. Each heuristic either returns the assignment a itself or
a tuple d = (i, b) encoding that the DECISION routine should
construct an assignment by setting vi = b in the form needed
for the given ADS instantiation.
DLIS. The DLIS heuristic selects the most commonly ap-
pearing literal and returns the assignment that makes it true.
Our formulation of it as Algorithm 3 undertakes a linear
scan over every C j ∈ φ for every vi ∈V . The heuristic calcu-
lates the frequency of vi and ¬vi as ∑

m
j=1 C j.contain(vi) and

may have unit clause representations which can be used immediately as
an assignment. The procedure can be generalized in practice by extending
C j.unit() to return the literal when it is true.

Algorithm 2: 2p-etr ppSAT Solver
Input: φ, n, m, τλ,n,m
Output: SAT/UNSAT

1 ObStack← stack(); τ← 0; a←⊥; bconflict← 0;
2 while τ≤ τλ,n,m do
3 if τ 6= 0 then
4 σ← Check(φ, a);
5 if σ = 0 then
6 return SAT
7 bconflict← (σ = 1);
8 e← ObStack.pop(bconflict);
9 if e←⊥′ then

10 return UNSAT
11 aback, φback← e;
12 φprop← Propagation(φ, a);
13 (bunit, aunit)← UnitSearch(φprop) ;
14 adec← Decision(φprop);
15 ObStack.CondPush(¬bunit∧¬bconflict,(adec,φprop));
16 if bunit = 0 then
17 a← adec;
18 else
19 a← aunit;
20 φ← φprop;
21 if bconflict = 1 then
22 a←¬aback;
23 φ← φback;
24 τ = τ+1;

Algorithm 3: DLIS Heuristic
Input: L = {`1, . . . , `2n},C = {C1, . . . ,Cm}
Output: d ∈ [1..n]×{0, 1}

1 max← 0; d← (⊥,⊥);
2 for i← 1 to n do
3 sP← 0, sN ← 0;
4 for j← 1 to m do
5 sP = sP +C j.contain(`i);
6 sN = sN +C j.contain(¬`i);
7 if sN ≥ max then
8 d← (i, 0); max← sN ;
9 if sP ≥ max then

10 d← (i, 1); max← sP;
11 return d;

∑
m
j=1 C j.contain(¬vi) respectively. It then determines whether

either of vi or ¬vi is the most frequent literal seen so far, and if
so sets d as necessary to encode it. After iterating over all the
variables d encodes the most frequent literal and is returned.

RAND. Let the binary vector Û ∈ {0, 1}n indicate whether
the i-th variable in V has been assigned. The RAND heuristic
guesses a variable assignment by uniformly selecting a ran-
dom unassigned variable and setting it to a bit also chosen

2990 31st USENIX Security Symposium USENIX Association

Algorithm 4: Random Value Sampler internal (RVSi)

Input: Q ∈ N, r′0 ∈ {0, 1}l , r′1 ∈ {0, 1}l

Output: r ∈ {0, 1}l

1 b← 0; Q′← 0l ;
2 for i ∈ {l−1, . . . , 0} do
3 if Q[i] 6= 0∨b = 1 then
4 Q′[i]← 1; b← 1;
5 r′← r′0⊕ r′1;
6 r← ∑i∈[l] r′[i] · (Q′[i] ·2i);
7 return r;

uniformly at random. Since Û is derived from φ as well as
prior assignments, the computation in this procedure must be
data-oblivious and amenable to efficient realization by secure
computation primitives. At the core of our design is Algo-
rithm 4, which with probability p1 ≥ 1/2 obliviously selects
a secret r ∈ [Q] for private Q ∈ N.

We assume that Q is encoded as a binary string of length
l ∈ N. This is the natural encoding for binary garbled circuits,
but may not be for other 2PC primitives. We let h ∈ N be
one greater than the index (from zero) of the most significant
non-zero bit in Q, e.g., h = 4 for l = 6 and Q = 9 = 001001.
The construction builds a multiplexer which maps an integer
x′ ∈ [2l] to x ∈ [2h] by keeping the lower h bits unchanged
while setting the upper l−h bits to zero. It then applies this
multiplexer to a random binary string r′ ∈ {0, 1}l , generating
r ∈ {0, 1}l to be interpreted as an integer upon return. To
sample r′ within 2PC we define it as r′ = r′0⊕ r′1, where r′b is
privately sampled by Pb.

Notice that r < Q with some probability p1 ≥ 1/2, as it
is guaranteed when r′[l−h] = 0. The parties can repeat Al-
gorithm 4 for sufficient κ ∈ N so that the probability every
returned r lies outside [Q], or p2 ≤ 2−κ, is suitably negligible.
A reasonably small constant such as κ = 32 suffices. A wrap-
per function RVS(), which we otherwise omit, can make these
repeated invocations of RVSi() and then undertake a linear
scan over the outputs to finally return, e.g., the last which lies
within the desired range.

Our construction to uniformly select an unassigned variable
is Algorithm 5. It linearly scans Û and counts the number of
unassigned variables, before invoking Algorithm 4 to get a
random index k. It then selects the k-th unassigned variable
through another scan of Û , and assigns to it a random b =
b0⊕b1, where bb is sampled and provided by Pb.
Weighted-RAND. Let L = {`1, . . . , `2n} be a set of literals
and D a distribution over L expressed as set of positive inte-
gers W = {w1, . . . , w2n} such that for all i ∈ [1..2n]

Pr(`i) =
wi

SW
, for SW =

2n

∑
j=1

w j.

For our decision heuristic wi will be the frequency count of the
i-th literal. We design an oblivious algorithm that randomly

Algorithm 5: Uniform Random Selection

Input: Û ∈ {0, 1}n, r′0, r′1 ∈ {0, 1}l , b0, b1 ∈ {0, 1}
Output: d ∈ [1..n]×{0, 1}

1 c← 0; d← (⊥,⊥);
2 for i← 1 to n do
3 c← c+Û [i];
4 k←RVS(c, r′0, r′1);
5 for i← 1 to n do
6 k← k−Û [i];
7 if k = 0 then
8 d← (i, b0⊕b1);
9 return d;

Algorithm 6: Weighted Random Selection

Input: W ∈ Z2n
≥0, L = {`1, . . . , `2n}, r′0, r′1 ∈ {0, 1}l

Output: a = (ind+, ind−)
1 c← 0;
2 for i← 1 to 2n do
3 c = c+wi;
4 k←RVS(c, r′0, r′1);
5 for i← 1 to 2n do
6 if 0 < k < wi then
7 a← `i;
8 k← k−wi;
9 return a;

samples an element of L according to W in Algorithm 6. First
we compute c = w1 + · · ·+w2n. Then, using Algorithm 4
an integer k is sampled from [c]. Let F(`i) = ∑

i
j=1 w j. The

algorithm finds `i such that F(`i−1) < k ≤ F(`i) through a
linear scan, which is then returned as the assignment. The
intuition behind the correctness of the algorithm is that for
any random variable Y , a sample value can be generated by
drawing a random r ∈ [0, 1] and then finding its preimage on
the cdf of Y .
CDCL. Perhaps the most important development in SAT
solving since DPLL itself is conflict-driven clause learning
(CDCL) [20, 49, 55]. The essential idea of CDCL is that
whenever a conflict is found it is possible to resolve a self-
contained subset of the assignments which triggered the con-
flict. For example, the CDCL learning procedure might learn
that x1 = 1, x12 = 0, x27 = 1 is impossible for any model.
So, by creating a new clause made out of their negation, i.e.,
(¬x1 ∨ x12 ∨¬x27) and adding it to φ, any branches of the
search tree which would try that impossible combination are
cut off immediately. This dramatically reduces the size of the
space which the solver explores while retaining soundness and
completeness. CDCL is particularly essential for efficiently
resolving UNSAT instances, which require establishing a uni-
versal (all models do not satisfy), rather than existential (there
exists a satisfying model), proposition over the search tree.

USENIX Association 31st USENIX Security Symposium 2991

For ppSAT solving to reach its potential will almost cer-
tainly require supporting CDCL. However, this is a challeng-
ing task. As an immediate issue, CDCL only learns clauses
when backtracking happens. Continuing to hide those oc-
currences would require a deterministic schedule for adding
clauses. Though a simple approach is to add one clause per
giant step while padding out with tautologies, every increase
to the size of the formula makes every ensuing giant step
more expensive. An alternative approach might be to add
clauses less frequently, perhaps keeping the largest learned
in the interim and discarding the rest. Exploring this frontier
will be critical to use of CDCL within a ppSAT solver.

Additionally, the CDCL learning process itself would need
to be made oblivious. Usually it is understood as the building
of an implication graph for which a suitable (and not necessar-
ily minimal) cut produces the assignments to negate. Though
this process may be rendered as a sequence of resolution op-
erations potentially amenable to oblivious formulation [7],
doing so without undue overhead may require care.

4.4 Complexity
The overall circuit complexity of our protocol is O(S×C),
where S is the total number of giant steps and C is the cost of
each one. The round complexity of our protocol is O(S), as
every giant step is a constant-round 2PC of a single circuit.
The value of S depends on τλ,n,m, on the number of steps
necessary to resolve φ, and on whether an exact-time, time-
bound, or noisy-time (Appendix D) solver is used.

Our value for C is O(mn + n logn), though it may vary
based on the details of the ADS instantiation and the heuris-
tics. The circuit complexities of UNITSEARCH, CHECK, and
PROPAGATION are each O(mn), while that of BACKTRACK
is O(mn + n logn) with the logarithmic term arising from
the oblivious stack [61]. UNITSEARCH, CHECK, and PROP-
AGATION each require O(1) linear scans over the m clauses;
during each scan the procedures apply the various ADS oper-
ations, each of which require O(1) or O(n) time in our β≈ n
instantiation. BACKTRACK consists of a pop operation from
the oblivious stack of a (partial) model represented in O(n)
bits, taking O(n logn) time, followed by the application of
that model to recover the formula state in time O(mn). Finally,
DECISION has complexity O(H+n logn), where H is the com-
plexity of the chosen heuristic and n logn is the complexity
of the oblivious stack push operation. The DLIS and RAND
heuristics have H = O(mn). The complexity of Weighted-
RAND also requires H = O(mn) so long as the weight of a
literal is its frequency in the formula. Other heuristics could
have worse (or better) asymptotic cost.

As discussed in §4.1, a RAM-based secure computation
solution would reduce the cost of accessing n bits from O(n)
to O(log2 n). This would, e.g., reduce the cost of ADS opera-
tions where we must touch a given literal at every clause, such
as C.contain(`), from O(mn) to O(m log2 n). With sufficient
refining of the data structures, heuristics, and composition of

the subroutines these improvements may improve the asymp-
totic runtime of C in total. However, as noted we can project
the protocol efficiency would not be concretely superior at
present until at least n≥ 217 [16], with the true crossover de-
pending in part on network conditions as ORAM also requires
logarithmic, instead of constant, rounds. We leave the poten-
tial of ORAM to future work once algorithm enhancements,
like CDCL, make it relevant.

4.5 Obliviousness and Security
At its core our solver raises DPLL into a secure computation
using oblivious algorithms and supporting data structures.
For the general purpose ADS instantiation (when β≈ n), our
fundamental design choices were to represent both literals
and clauses as binary vectors and to manage the decision tree
with an oblivious stack to permit backtracking [61]. Using
these data structures, the standard DPLL subroutines (such
as PROPAGATION or BACKTRACK) can be implemented with
linear scans over vectors of fixed public size, oblivious multi-
plexing of vectors, and push and pop of vectors to and from
the oblivious stack. Hence, each of them is data-oblivious.

These individual subroutines must be combined in a man-
ner that maintains data-obliviousness, which is why we adapt
DPLL to enforce so-called giant steps (cf. § 4.2). A giant
step executes these several small steps in a deterministic or-
der, which are then consolidated through multiplexing. The
use of giant steps may result in redundant and ultimately dis-
carded operations, but are necessary to hide the (usually data-
dependent) DPLL step being applied. Obliviousness must
also be enforced for the decision heuristics. Hence our careful
choice of three standard DPLL heuristics amenable to for-
mulation using the same linear scanning and multiplexing
techniques: DLIS, RAND, and Weighted-RAND (cf. § 4.3).

A security argument follows from the data-oblivious nature
of our solver, the security of two-party computation, and stan-
dard composition results [10]. A simulator Sim1−b invokes
the simulators for the fixed sequence of circuits, and halts
according to τ or τλ,n,m by injecting s and (optionally) M into
the final output. We refer to [37, 38] for discussion of the
proof techniques underlying this sketched argument.

5 Evaluation
Testbed. We implemented our solver using the semi-honest
2PC library of the EMP-toolkit [60]. For managing the obliv-
ious stack we adopted an existing reimplementation of the
circuits of Zahur et al. [63]. All evaluations were run on a ma-
chine with 8GB of RAM and an Intel(R) Core(TM) i7-8700K
CPU @ 3.70GHz * 6 processor, with network bandwidth up
to 10 Gbps.

Experiment Design. We first measured (§5.1) the perfor-
mance of a single giant step – in terms of both the number
of gates and the runtime of each subroutine – over formulas
of various sizes. These evaluations verified our analysis of
the asymptotic complexity of ppSAT and its most critical bot-

2992 31st USENIX Security Symposium USENIX Association

101 102 103

Number of variables (n)

10−3

10−2

10−1

100

101

Ti
m

e
(s

)

(a) Unit Search

101 102 103

Number of variables (n)

(b) Propagation

101 102 103

Number of variables (n)

(c) Check

101 102 103

Number of variables (n)

(d) Backtrack

100 clauses 1000 clauses 5000 clauses 10000 clauses

Figure 2: Subroutine time for our ADS instantiation when β≈ n. The runtimes of all four subroutines show linear growth as the number
of variables rises. The runtimes of UNITSEARCH, PROPAGATION and CHECK also increase with the number of clauses. Due to our optimized
implementation, the runtime of DECISION is independent of the number clauses.

tlenecks. We then benchmarked (§5.2) our ppSAT solver by
testing what proportion of instances it was able to solve (up
to a timeout). Finally, we compared (§5.3) the performance of
our ppSAT solver against two plaintext solvers: our oblivious
ppSAT algorithm executed without cryptographic primitives
or communication, and the state-of-the-art Kissat solver [2].
Instance Generation. For measuring the cost of a single gi-
ant step the instances were generated randomly. Due to the
oblivious nature of the algorithm this has no bearing on the
evaluation. For the full evaluation benchmarks, we projected
the cost of our solver on small haplotype satifiability instances
drawn from the dataset of [43] which was used in the origi-
nal SHIPs papers [41, 42]. Our instances have parameters of
either (i) |G| ∈ [1..8] and r = 2|G|, intended to evaluate the
effect of instance size; or (ii) |G|= 3 and r ∈ [3..6], so as to
evaluate the effect of instance hardness and (un)satisfiability.
We list the resultant formula sizes in terms of n and m in
Table 1. Although these databases are smaller than modern
HIPP benchmarks, important medical research that motivated
early work in computational haplotype inference occurred
over datasets where |G| ≈ 10 [36, 53].

|G| #var×#clause (≈) |G| #var×#clause (≈)
1 60×170 2 150×700

3 r = 3 150 ×750 3 r = 5 200×1200
r = 4 180×1000 r = 6 250×1400

4 350×2600 5 400×4000
6 600×6000 7 800×8000
8 900×10000 — —

Table 1: The size of the formulas for our benchmarks.

5.1 Micro Benchmarks for Single Giant Steps
We measured the time consumption and number of gates
of UNITSEARCH,DECISION,CHECK, and PROPAGATION for

100 clauses 1000 clauses 5000 clauses 10000 clauses0
1
2
3
4
5
6
7

Ti
m

e
(s

)

DLIS
RAND
Weighted-RAND

Figure 3: Time for heuristics when n = 100. The runtime of each
heuristic grows with an increase in the number of clauses.

m = 1000, n = 1000 m = 10000, n = 100 m = 5000, n = 10000

10

20

30

40

50

Ti
m

e
(s

)

R R

R

D D

D

W W

W
D: DLIS
R: RAND
W: Weighted-RAND

Unit Search
Decision
Check
Propagation
Backtrack

Figure 4: Time for one giant step varying n, m, and the heuristic.
The DECISION routine dominates the performance of each giant step.
The runtime of BACKTRACK is almost negligible in comparison to
the other subroutines, and therefore is not visible in the figure.

each combination of n ∈ {10, 50, 100, 1000} and m ∈
{100, 1000, 5000, 10000}, which covers the typical size of
instances in older benchmarks such as [30].

Unit Search, Propagation, and Check: The first three rows
of Table 2 show the number of gates in UNITSEARCH, PROP-
AGATION and CHECK for formulas of different sizes. The
number of gates increases linearly with both n and m, which
is consistent with our asymptotic analysis.

Figures 2(a-c) graph the execution time of UNITSEARCH,
CHECK and PROPAGATION. The observed time appears linear

USENIX Association 31st USENIX Security Symposium 2993

#var×#clause 100×5K 100×10K 1K×10K
Unit Search 10 20 200
Propagation 6 12 120

Check 8 16 160
Backtrack 0.02 0.02 0.22

Decision
D
R
W

30
12
88

60
24

175

600
240
1740

Table 2: The approximate number of gates for each subroutine.
The units are in millions. D, R, and W refer to the DLIS, RAND,
and Weighted-RAND heuristics respectively.

in the number of variables and clauses, though the growth
in the latter decreases, likely due to amortization of general
overhead. This is as expected, since UNITSEARCH, CHECK
and PROPAGATION all run in O(mn) time. The evaluation
shows that even for larger instances with n≈ 1000 and m≈
10000 these routines cost less than 10 seconds each.
Backtrack: Figure 2(d) shows the time per BACKTRACK ex-
ecution, which reflects the fourth row of Table 2 in showing
that the number of gates increases linearly with n, but is inde-
pendent of m. Due to an optimization in our implementation
the cost of backtracking only depends on the number of vari-
ables: we store just the current model (including isAlive) in the
oblivious stack, and then recover the formula state within the
next multiplexer. As models are just O(n) bits this is indepen-
dent of the number of clauses. Due to this efficient oblivious
stack design the BACKTRACK time for an instance where
n = 1000 and m = 10000 takes only ≈ 0.01s.
Decision: The last row of Table 2 presents the number of gates
for DECISION, when using our different heuristics from §4.3.
The figure shows DECISION is the most expensive compo-
nent of ppSAT. While each heuristic linearly scales up in
O(mn) time, RAND takes the fewest concrete gates. Figure 3
compares the experimental runtimes when n = 100 and with
various clause sizes. Again, the observed growth for each
heuristic is as expected linear in the number of clauses. The
Weighted-RAND heuristic is the most expensive at almost
twice the cost of DLIS – likely as it combines RVS with fre-
quency counting. The simpler RAND is cheapest at about
only half the time of DLIS.
Giant Step: Figure 4 displays the observed time for a full
giant step across a variety of choices for n, m, and heuristic.
For instances of the same size the fraction that each com-
ponent takes remains stable, as expected. For instances of
size typical for old benchmarks (n ≈ 100,m ≈ 10000) the
time cost is roughly 3s, 5s, and 10s with RAND, DLIS and
Weighted-RAND respectively.

5.2 Solving Benchmarks
To evaluate the performance of our solver we first measured
the total number of giant steps S for our instances. Although

our solver implementation is complete, as cryptographic op-
erations do not affect S to save time we gathered this data
with all cryptographic operations removed. We then used the
methodology of the micro benchmarks to get a timing C for a
single 2PC giant step for those instances, from which the total
runtime can be projected as S×C. We also ran the complete
ppSAT solver over an UNSAT formula of 1000 variables and
1000 clauses, which took 3019.7 seconds and 532 communica-
tion rounds. The projected time was 2993.8 seconds, differing
from the real run time by only 0.8%.

We benchmarked our solver using instances we reduced in
size from the haplotype inference dataset of [43], specifically
the 100kb genotype data. We used 232 instances in total to
benchmark our solver, varying over |G| and r as previously
described. When r = 2|G| the formulas are necessarily sat-
isfiable, while the remaining are mostly unsatisfiable. Both
Figure 5 and Figure 6 depict the proportion of the instances
solved within a particular time, i.e., a point (x,y) indicates
that y proportion of the instances are projected to be solved
within x seconds. We set the timeout to 200k seconds (≈ 2.3
days).

For the first trial (Figure 5) the instances vary in |G| while
r is fixed to be 2|G|. All three heuristics can solve most for-
mulas before the timeout for |G| ≤ 3, but vary in performance
when the formulas get larger. For those smaller formulas DLIS
outperforms RAND and Weighted-RAND. However, when
|G| > 3, Weighted-RAND outperforms the other two, and
when |G|= 8 it is the only heuristic with which the solver can
successfully solve any benchmarks. This result is expected
and reasonable: though expensive per giant step, it is the only
one of the three to combine randomness with insight into the
formula structure (through the weighting).

In the second trial (Figure 6) we evaluated the performance
of our solver for various r with fixed |G|= 3. When r < 2|G|
the formula can (i) be unsatisfiable; or (ii) remain satisfiable
but potentially be more difficult, as it requires some haplo-
types to explain more than one genotype. The solver can
handle over 70% instances before the timeout for all heuris-
tics and almost all r, though the RAND heuristic leads to
only 30% success when r = 5. Despite the larger formulas
the solver is more successful for r = 6 than for r = 5, likely
due to the greater solution freedom explained by (i) and (ii).

5.3 Comparison to Plaintext Solvers
Finally, we compared our ppSAT solver against itself when
run in the plaintext. We wrote our plaintext solver in Python
by implementing our pseudocode in the natural way, i.e., ev-
ery garbled circuit was replaced with standard RAM model
operations, and a non-oblivious stack was used. Table 3 shows
the results and so the overhead brought by communication
and 2PC. We also compared ppSAT with the state-of-the-art
Kissat SAT solver [2]. For our 232 benchmarks Kissat can
solve 231 of the instances within 0.02s, and the last within 1s.
For brevity we omit the raw data from this experiment.

2994 31st USENIX Security Symposium USENIX Association

100 101 102 103 104 105

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

in
st

an
ce

s
so

lv
ed

D: DLIS heuristic R: RAND heuristic W: Weighted-RAND heuristic |G|=1, W
|G|=1, R
|G|=1, D
|G|=2, W
|G|=2, R
|G|=2, D
|G|=3, W
|G|=3, R
|G|=3, D
|G|=4, W
|G|=4, R
|G|=4, D

|G|=5, W
|G|=5, R
|G|=5, D
|G|=6, W
|G|=6, R
|G|=6, D
|G|=7, W
|G|=7, R
|G|=7, D
|G|=8, W
|G|=8, R
|G|=8, D

Figure 5: Haplotype benchmarks for when |G| ∈ [1..8] and
r = 2|G| with timeout of 200k seconds. With all heuristics the
solver is successful on small formulas, e.g., |G| ≤ 2, for which DLIS
outperforms the randomized heuristics. Weighted-RAND becomes
the most effective for larger databases.

101 102 103 104 105

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

in
st

an
ce

s
so

lv
ed

D: DLIS heuristic R: RAND heuristic W: Weighted-RAND heuristic
r = 3, W
r = 3, R
r = 3, D
r = 4, W
r = 4, R
r = 4, D
r = 5, W
r = 5, R
r = 5, D
r = 6, W
r = 6, R
r = 6, D

Figure 6: Haplotype benchmarks for r ∈ {3,4,5,6} when |G|=
3 with timeout of 200k seconds. Our solver resolves over 80% of
benchmarks before timing out, except for RAND when r = 5.

6 Conclusion
The field of SAT solving has seen a superb (and continu-
ing) developmental arc since the publication of DPLL almost
60 years ago. Given its centrality to computing and the im-
portance of data privacy to modern technology and society,
efficient privacy-preserving SAT solving would likely be a
versatile and powerful tool for research and practice. In this
paper we established the core security definitions, oblivious
DPLL design, and private decision heuristics necessary to
implement a ppSAT solver capable of resolving small but
practical instances. Of perhaps greater importance than our
empirical results is the basis this lays for future work towards
more efficient and effective ppSAT solvers, which we might
hope will retrace the developmental arc of SAT solving itself.

Limitations & Future Directions. The centrality of CDCL
to modern SAT solving makes its reformulation for ppSAT,
as discussed in §4.3, the most important direction for future
work. The greatest limitation of the original DPLL algorithm –
and so also of our oblivious adaption of it – is its inability to ef-
fectively learn from failed branches of its search. CDCL is the
dominant enhancement of DPLL for rectifing this shortcom-
ing [20], and it is hard to imagine a path to general practicality
for ppSAT solving that does not also rely upon it, especially
for UNSAT instances.

Pruning the search tree is not the only tactic, however, for

#var×#clause 50×10K 100×10K 1K×10K
RAND 3.4× 5.1× 47.0×

Weighted-RAND 8.3× 11.0× 165×
DLIS 4.6× 6.4× 136.8×

Table 3: Slowdown of ppSAT compared with it in the plaintext.
In the plaintext means all data and operations are public during the
computation.

beating back the combinatorial explosion of DPLL. Modern
SAT solvers rely heavily on “making their own luck” for
searching what remains through intelligent decision heuris-
tics. Our DLIS, RAND, and Weighted-RAND heuristics are
limited by the standards of modern solvers [46], but have
the benefit for us of being naturally implementable within
Boolean circuits. Adapting or developing a fresh suite of ef-
fective heuristics suitable for oblivious computation – perhaps
even using mixed-mode MPC (i.e., with both Boolean and
arithmetic circuit primitives) – is another major future direc-
tion. Decision heuristics also provide a particularly fertile
ground for further collaboration between the cryptography
and formal methods communities, as they will require recon-
ciling the algorithmic techniques of each. Together, adapting
CDCL and developing suitable decision heuristics are the
foremost steps to generally practical ppSAT solving.

The last two directions for future work we emphasize are
discussed more comprehensively in Appendix D. The first is
to begin to understand the practical meaning of any privacy
loss permitted by our security definitions. There is limited
prior work on characterizing information leakage from MPC
for general computations, with that of Mardziel et al. [44]
the only known to the authors. At present we cannot in any
meaningful sense explain what a party loses in privacy by, e.g.,
setting a specific τλ,n,m based on an economic analysis of pro-
jected runtime using our micro benchmarks methodology, or
choosing an exact-time-revealing solver over its time-bound-
revealing cousin. Given the rich and complex encoding of
information within the structure of SAT formulas, exploring
how ppSAT solvers should leak information (which may be
especially important to integrating CDCL) is likely necessary
for widespread confidence in their future practical deploy-
ment. Finally, in the appendix we also discuss a collection of
preprocessing optimizations which trade off efficiency against
privacy. As the core algorithms of ppSAT solving develop and
mature, expanding the suite of such techniques may further
encourage the development of practical tooling.

Acknowledgments
The authors thank Peter Chan for making available his oblivi-
ous stack implementation and Yuyang Sang for implement-
ing plaintext ppSAT. This work was supported by the ONR
through an NDSEG Fellowship and under Grant N00014-17-
1-2787, by NSF awards CCF-2106845, CCF-2131476, CNS-
2016240, and CNS-1565208, as well as by research awards
from Facebook, Google and PlatON.

USENIX Association 31st USENIX Security Symposium 2995

References
[1] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik

Nayak, Enoch Peserico, and Elaine Shi. OptORAMa:
Optimal Oblivious RAM. In International Conference
on the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT ’20), 2020.

[2] Tomáš Balyo, Nils Froleyks, Marijn J.H. Heule, Markus
Iser, Matti Järvisalo, and Martin Suda. Proceedings of
SAT Competition 2021: Solver and Benchmark Descrip-
tions. 2021.

[3] Roberto J. Bayardo Jr. and Joseph Daniel Pehoushek.
Counting Models Using Connected Components. In
National Conference on Artificial Intelligence (AAAI
’00), 2000.

[4] Roberto J. Bayardo Jr and Robert C. Schrag. Using
CSP Look-Back Techniques to Solve Real-World SAT
Instances. In National Conference on Artificial Intelli-
gence (AAAI ’97), 1997.

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A General Approach to Network Configuration
Verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM ’17).

[6] Armin Biere. Lingeling Essentials, A Tutorial on De-
sign and Implementation Aspects of the the SAT Solver
Lingeling. Pragmatics of SAT (PoS@SAT ’14), 2014.

[7] Armin Biere, Marijn Heule, and Hans van Maaren.
Handbook of Satisfiability. IOS press, 2009.

[8] Marina Blanton, Aaron Steele, and Mehrdad Alisagari.
Data-Oblivious Graph Algorithms for Secure Compu-
tation and Outsourcing. In Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer
and Communications Security (ASIA CCS’ 13), 2013.

[9] Paul Bunn and Rafail Ostrovsky. Secure Two-Party
k-means Clustering. In Proceedings of the 14th ACM
Conference on Computer and Communications Security
(CCS ’07), 2007.

[10] Ran Canetti. Security and Composition of Multiparty
Cryptographic Protocols. Journal of Cryptology, 13(1),
January 2000.

[11] Stephen A. Cook. The Complexity of Theorem-Proving
Procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing (STOC ’71), 1971.

[12] Mark J. Daly, John D. Rioux, Stephen F. Schaffner,
Thomas J. Hudson, and Eric S. Lander. High-Resolution
Haplotype Structure in the Human Genome. Nature Ge-
netics, (2), 2001.

[13] Martin Davis, George Logemann, and Donald Loveland.
A Machine Program for Theorem-Proving. Communi-
cations of the ACM (CACM), (7), 1962.

[14] Martin Davis and Hilary Putnam. A Computing Pro-
cedure for Quantification Theory. Journal of the ACM
(JACM), (3), 1960.

[15] Damien Desfontaines and Balázs Pejó. Sok: Differ-
ential Privacies. Proceedings on Privacy Enhancing
Technologies (PoPETS ’20), (2), 2020.

[16] Jack Doerner and Abhi Shelat. Scaling ORAM for
Secure Computation. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (CCS ’17), 2017.

[17] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating Noise to Sensitivity in Private
Data Analysis. In Theory of Cryptography Conference
(TCC ’06). Springer, 2006.

[18] Cynthia Dwork and Aaron Roth. The Algorithmic Foun-
dations of Differential Privacy. Foundations and Trends
in Theoretical Computer Science, (3-4), 2014.

[19] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient Private Matching and Set Intersection. In
International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT ’04).
Springer, 2004.

[20] Vijay Ganesh and Moshe Vardi. On The Unreasonable
Effectiveness of SAT Solvers. In Tim Roughgarden,
editor, Beyond the Worst-Case Analysis of Algorithms.
Cambridge University Press, 2020.

[21] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov,
Fernando Krell, Tal Malkin, Mariana Raykova, and Yev-
geniy Vahlis. Secure Two-Party Computation in Sublin-
ear (Amortized) Time. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security
(CCS ’12), 2012.

[22] Ana Graça, Inês Lynce, Joao Marques-Silva, and Ar-
lindo L. Oliveira. Haplotype Inference by Pure Parsi-
mony: a Survey. Journal of Computational Biology, (8),
2010.

[23] Adam Groce, Peter Rindal, and Mike Rosulek. Cheaper
Private Set Intersection via Differentially Private Leak-
age. Proceedings on Privacy Enhancing Technologies
(PoPETS ’19), (3), 2019.

[24] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam
Venkatesan. Program Analysis as Constraint Solving.
In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’08), 2008.

[25] Dan Gusfield. Haplotype Inference by Pure Parsimony.
In Annual Symposium on Combinatorial Pattern Match-
ing (CPM ’03). Springer, 2003.

[26] Youssef Hamadi, Said Jabbour, and Lakhdar Sais.
ManySAT: a Parallel SAT Solver. Journal on Satis-
fiability, Boolean Modeling and Computation, (4), 2010.

[27] Marcella Hastings, Brett Hemenway, Daniel Noble, and
Steve Zdancewic. Sok: General Purpose Compilers
for Secure Multi-Party Computation. In 2019 IEEE
Symposium on Security and Privacy (S&P ’19), pages
1220–1237. IEEE, 2019.

2996 31st USENIX Security Symposium USENIX Association

[28] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Di-
vesh Srivastava. Composing Differential Privacy and
Secure Computation: A Case Study on Scaling Private
Record Linkage. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (CCS ’17), 2017.

[29] Nils Homer, Szabolcs Szelinger, Margot Redman, David
Duggan, Waibhav Tembe, Jill Muehling, John V. Pear-
son, Dietrich A. Stephan, Stanley F. Nelson, and
David W. Craig. Resolving Individuals Contributing
Trace Amounts of DNA to Highly Complex Mixtures us-
ing High-Density SNP Genotyping Microarrays. PLoS
Genet, (8), 2008.

[30] Holger H. Hoos and Thomas Stützle. SATLIB: An
Online Resource for Research on SAT. International
Conference on Theory and Applications of Satisfiability
Testing (SAT ’00), 2000.

[31] Russell Impagliazzo and Ramamohan Paturi. On the
Complexity of k-SAT. Journal of Computer and System
Sciences, (2), 2001.

[32] Richard M. Karp. Reducibility Among Combinatorial
Problems. In Complexity of Computer Computations.
Springer, 1972.

[33] Lea Kissner and Dawn Song. Privacy-Preserving Set
Operations. In Annual International Cryptology Confer-
ence (CRYPTO ’05). Springer, 2005.

[34] Giuseppe Lancia, Maria Cristina Pinotti, and Romeo
Rizzi. Haplotyping Populations by Pure Parsimony:
Complexity of Exact and Approximation Algorithms.
INFORMS Journal on Computing, (4), 2004.

[35] K. Rustan M. Leino. A SAT Characterization of
Boolean-Program Correctness. In International SPIN
Workshop on Model Checking of Software (SPIN ’03).
Springer, 2003.

[36] Zhenping Li, Wenfeng Zhou, Xiang-Sun Zhang, and
Luonan Chen. A Parsimonious Tree-Grow Method for
Haplotype Inference. Bioinformatics, (17), 2005.

[37] Yehuda Lindell. How to Simulate It – a Tutorial on the
Simulation Proof Technique. Tutorials on the Founda-
tions of Cryptography, 2017.

[38] Yehuda Lindell and Benny Pinkas. A Proof of Security
of Yao’s Protocol for Two-Party Computation. Journal
of Cryptology, (2), 2009.

[39] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, and
George Varghese. Network Verification in the Light
of Program Verification. Technical report, Microsoft
Research, 2013.

[40] Ning Luo, Qiao Xiang, Timos Antonopoulos, Ruzica
Piskac, Y. Richard Yang, and Franck Le. IVeri: Privacy-
Preserving Interdomain Verification. arXiv preprint
arXiv:2202.02729, 2022.

[41] Inês Lynce and Joao Marques-Silva. Efficient Haplo-
type Inference with Boolean Satisfiability. In National

Conference on Artificial Intelligence (AAAI ’06). AAAI
Press, 2006.

[42] Inês Lynce and João Marques-Silva. SAT in Bioinfor-
matics: Making the Case with Haplotype Inference. In
International Conference on Theory and Applications
of Satisfiability Testing (SAT ’06). Springer, 2006.

[43] Jonathan Marchini, David Cutler, Nick Patterson,
Matthew Stephens, Eleazar Eskin, Eran Halperin, Shin
Lin, Zhaohui S Qin, Heather M. Munro, Gonçalo R.
Abecasis, Peter Donnelly, and International HapMap
Consortium. A Comparison of Phasing Algorithms for
Trios and Unrelated Individuals. The American Journal
of Human Genetics, (3), 2006.

[44] Piotr Mardziel, Michael Hicks, Jonathan Katz, and Mud-
hakar Srivatsa. Knowledge-oriented Secure Multiparty
Computation. In Proceedings of the 7th Workshop
on Programming Languages and Analysis for Security
(PLAS ’12), pages 1–12, 2012.

[45] Filip Marić. Formalization and Implementation of Mod-
ern SAT Solvers. Journal of Automated Reasoning, (1),
2009.

[46] Joao Marques-Silva. The Impact of Branching Heuris-
tics in Propositional Satisfiability Algorithms. In Por-
tuguese Conference on Artificial Intelligence. Springer,
1999.

[47] Ruben Martins, Vasco Manquinho, and Inês Lynce. An
Overview of Parallel SAT Solving. Constraints, (3),
2012.

[48] Kenneth L. McMillan. Interpolation and SAT-based
Model Checking. In International Conference on Com-
puter Aided Verification (CAV ’03). Springer, 2003.

[49] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik. Chaff: Engineering an
Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference (DAC ’01), 2001.

[50] Paul Ohm. Broken Promises of Privacy: Responding to
the Surprising Failure of Anonymization. UCLA L. Rev.,
2009.

[51] Nila Patil, Anthony J. Berno, David A. Hinds, Wade A.
Barrett, Jigna M. Doshi, Coleen R. Hacker, Curtis R.
Kautzer, Danny H. Lee, Claire Marjoribanks, David P.
McDonough, et al. Blocks of Limited Haplotype Diver-
sity Revealed by High-Resolution Scanning of Human
Chromosome 21. Science, (5547), 2001.

[52] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster Private Set Intersection Based on OT Extension.
In USENIX Security Symposium (USENIX Security ’14),
2014.

[53] Mark J. Rieder, Scott L. Taylor, Andrew G. Clark, and
Deborah A. Nickerson. Sequence Variation in the Hu-
man Angiotensin Converting Enzyme. Nature Genetics,
(1), 1999.

USENIX Association 31st USENIX Security Symposium 2997

[54] Thomas J. Schaefer. The Complexity of Satisfiability
Problems. In Proceedings of the Tenth Annual ACM
Symposium on Theory of Computing (STOC ’78), 1978.

[55] J.P. Marques Silva and K.A. Sakallah. GRASP-A New
Search Algorithm for Satisfiability. In Proceedings of
International Conference on Computer Aided Design
(ICCAD ’96). IEEE, 1996.

[56] Mate Soos, Karsten Nohl, and Claude Castelluccia. Ex-
tending SAT Solvers to Cryptographic Problems. In
International Conference on Theory and Applications
of Satisfiability Testing (SAT ’06). Springer, 2009.

[57] Niklas Sorensson and Niklas Een. Minisat v1. 13-A
SAT Solver with Conflict-Clause Minimization. SAT,
(53), 2005.

[58] K. Sunder Rajan. Biocapital: The Constitution of Postge-
nomic Life. Duke University Press, 2006.

[59] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang,
and Xiaoyong Zhou. Learning Your Identity and Disease
from Research Papers: Information Leaks in Genome
Wide Association Study. In Proceedings of the 16th
ACM Conference on Computer and Communications
Security (CCS ’09), 2009.

[60] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-Toolkit: Efficient MultiParty Computation Toolkit.
https://github.com/emp-toolkit, 2016.

[61] Xiao Wang, Kartik Nayak, Chang Liu, T.H. Hubert Chan,
Elaine Shi, Emil Stefanov, and Yan Huang. Oblivi-
ous Data Structures. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security (CCS ’14), 2014.

[62] Andrew Chi-Chih Yao. How to Generate and Exchange
Secrets. In 27th Annual Symposium on Foundations of
Computer Science (FOCS ’86). IEEE, 1986.

[63] Samee Zahur and David Evans. Circuit Structures for
Improving Efficiency of Security and Privacy Tools. In
2013 IEEE Symposium on Security and Privacy (S&P
’13). IEEE, 2013.

A Details of Our Security Definition
Our formal definition of a secure ppSAT solver has four vari-
ants depending on when it halts and whether a model is output.
For brevity, we only explicitly give the most comprehensive.

Definition A.1 (Two-Party Exact-Time-and-Model-Reveal-
ing ppSAT Solver). Let λ be a security parameter, φ0, φ1, φpub
be Boolean propositional formulas over variables v1, . . . , vn
such that m = |φ0|+ |φ1|+ |φpub|, and T (λ, n, m) = τλ,n,m be
a polynomial. For b ∈ {0, 1}, let

vreal
b = viewΠ

b (φb, n, m, φpub,τλ,n,m,
P1−b(φ1−b, n, m, φpub, τλ,n,m)),

and

videal
b = viewΠ

b (φb, n, m, φpub,τλ,n,m,
Sim1−b(φb, n, m, φpub, τλ,n,m, s, M , τ)).

be the real and ideal views of Pb after executing protocol

(s, M)←Π(φ0 ‖ φ1; n, m, φpub, τλ,n,m)

terminating in τ≤ τλ,n,m steps. Then Π is a two-party exact-
time-and-model-revealing privacy-preserving SAT solver (2p-
etmr-solver) if

1. s = 1 iff ∃M ′.(M = M ′)∧M ′ |= φ;

2. s = 0 iff 6 ∃M ′.M ′ |= φ; and

3. there exists Sim1−b such that for any probabilistic
polynomial-time (PPT) decision algorithm A:

|Pr[A(1λ, vreal
b) = 1]−Pr[A(1λ,videal

b) = 1]| ≤ negl(λ)

where negl(λ) is eventually bounded above by the inverse
of every polynomial function of λ.

The three other variants of this definition are (i) a time-bound-
and-model-revealing solver (2p-tbmr-solver), where the simu-
lator is not given τ; (ii) an exact-time-revealing solver (2p-etr-
solver), where M is removed from the definition; and (iii) a
time-bound-revealing solver (2p-tbr-solver) which combines
the changes from (i) and (ii). Intuitively, the time-bound-
revealing definitions require the protocol to run for τλ,n,m
steps always, while the exact-time-revealing definitions allow
halting immediately upon resolution, and require aborting at
τλ,n,m if necessary.

B Instantiating the ADS for β� n
Recall that β≤ n is the maximum clause length in an instance
φ. When it is publicly known that the maximum number
of literals appearing in any given clause is small, an alter-
native approach to binary clausal vectors is to use signed
integers to represent both assignments and literals; i.e., ¬v j
and the assignment v j = 0 are each represented by − j. A
clause C ∈ φ is encoded by two vectors, literals ∈ Zβ and
active ∈ {0, 1}β. The literals vector is composed of β signed
integers which encode the literals and their sign, padded out
with zeros as necessary. The active vector encodes whether
the i-th literal has been removed from C. As an example,
at initialization (v1 ∨ v3 ∨¬v5) with β = 4 will be encoded
as literals = [1,3,−5,0] and active = [1,1,1,0]. A literal or
assignment is negated by flipping the sign.

Determining if a clause is unit can be implemented by
scanning active and checking if it has a unique non-zero entry.
To check membership of an `= j ∈C the algorithm checks if
there exists an i such that active[i] = 1 and literals[i] = j, while
removing it is accomplished by setting active[i] = 0 when
literals[i] = j.

At rest this instantiation provides more efficient clausal
representations so long as β · k < n where k > log n is the
bit-length of the integer encoding. In practice, our evaluation
of this approach suffered in comparison to that for β≈ n due

2998 31st USENIX Security Symposium USENIX Association

https://github.com/emp-toolkit

Algorithm 7: Clausal Algorithms when β� n

1 Function C j.unit():
2 b1← 0; b2← 0
3 for i← 1 to β do
4 b2← (active[i]∧b1)∨b2
5 b1← active[i]∨b1

6 return b1∧¬b2

7 Function C j.contain(` ∈ Z):
8 b← 0
9 for i← 1 to β do

10 b← b∨ (active[i]∧ literals[i] = `)
11 return b
12 Function C j.remove(a ∈ Z):
13 for i← 1 to β do
14 b← (literals[i] = a)
15 active[i] = ¬b∧ active[i]

Algorithm 8: Unit Search
Input: φ

Output: b ∈ {0, 1}, a = (ind+, ind−)
1 a←⊥; b← 0 ;
2 for j← 1 to m do
3 u j←C j.unit();
4 if u j = 1 then
5 a←C j; b← 1;
6 return b, a

to the reduced efficacy of an implementation optimization for
the oblivious stack. Specifically, to reduce the cost of the stack
operations our code only stores the current set of assignments
(including isAlive) within it, and then reconstructs the formula
during a backtrack. The signed integer encoding requires
spending a few hundred gates to compare every assignment
to every literal, of which there are β ·nm such comparisons.
Resolving this gap is a potential optimization path.

C Subroutine Definitions
We give our formal definitions for the UNITSEARCH, CHECK,
and PROPAGATION subroutines (see §4) as Algorithms 8-10.

D Additional Considerations
We raise a few additional considerations worthy of expansion,
which also point towards potential future research directions.

Noisy Termination. There are inherent compromises to
both exact-time-revealing and time-bound-revealing solvers.
For the former, it is not immediate how much information
leakage occurs when halting at resolution. In some circum-
stances it may be significant. For example, if φ0 and φ1 each
contain unit clauses (vi) and (¬vi) respectively then the solver
will always halt on the first giant step. If the inclusion of these
clauses carries privacy implications then this leakage may be

Algorithm 9: Check
Input: φ, `= (ind+, ind−)
Output: b ∈ {0,1,2}

1 b0← φ.empty();
2 b1← 0;
3 for j← 1 to m do
4 if C j.unit()∧C j.contain(¬`) then
5 b1← 1;
6 if b0 = 1 then
7 return 0;
8 else if b1 = 1 then
9 return 1;

10 else
11 return 2;

Algorithm 10: Propagation
Input: φ, a = (ind+, ind−)
Output: φ′

1 for j← 1 to m do
2 b0←C j.contain(a);
3 b1←C j.contain(¬a);
4 if b0 = 1 then
5 φ.remove(C j);
6 if b1 = 1 then
7 C j.remove(¬a);
8 return φ

unacceptable. Nonetheless, it seems plausible that for many
natural instances such runtimes are too coarse a measure to
contain information compromising to privacy in practice –
especially when using randomized heuristics. As for time-
bound-revealing solvers, running for τλ,n,m steps may be ex-
pensive and undesirable when not required for correctness.
Always requiring such a high cost could very well limit the
economic or social value of the solver.

A potential third way is to not terminate exactly upon reso-
lution, but instead to add calibrated noise to extend the runtime
for a manageable but privacy-enhancing number of steps. The
theory of differential privacy (DP) [17, 18] would seem to
provide an applicable toolkit, and has in fact been integrated
with 2PC for the closely related purpose of "noisy load over-
estimation" in a line of recent work [23, 28]. The intuitive
idea, following He et al. [28], is to relax Definition A.1 to
allow a bounded difference in the output of the adversary for
any two formulas of the same length. However, we cannot
directly use their formulation of output-constrained DP, since
in our case only some of the output (τ) will have added noise
on release – both s and (when applicable) M will be released
exactly.

Instead, we formulate a (ε0, ε1, δ0, δ1)-noisy-time-and-
model-revealing ppSAT solver (or (ε0, ε1, δ0, δ1)-2p-ntmr-

USENIX Association 31st USENIX Security Symposium 2999

solver) by altering Definition A.1 so that (i) instead

videal
b,φ′1−b

= viewΠ
b (φb, n, m, φpub,τλ,n,m,εb, δb,

Sim1−b(φb, φ
′
1−b, n, m, φpub, τλ,n,m,ε1−b,δ1−b, s, M))

for εb, ε1−b > 0 and 0≤ δb, δ1−b < 1, and (ii) requiring that
there exist a Sim1−b such that:

Pr[A(1λ, vreal
b) = 1]≤ eε1−b ·Pr[A(1λ,videal

b,φ′1−b
) = 1]+δ1−b

for all φ′1−b such that |φ1−b|= |φ′1−b|. Intuitively the simula-
tor no longer has τ, and so instead must internally execute
the ppSAT solver over φ′ = φb∧φ′1−b∧φpub to determine a
resolution time ρS, before adding noise to determine a τS to
halt at. As the real world stopping time τR is also a noisy
version of the true resolution time ρR, suitable noise will
allow the simulator to meet the requirement for (ε1−b, δ1−b)-
indistinguishability.

Unfortunately the instability of SAT instances makes this
guarantee difficult to practically realize. With this definition
we are viewing the ppSAT solver as a mechanism which on
input a "database" in the form of φ noisily outputs the resul-
tant runtime τφ ∈ [1..τλ,n,m]. The amount of noise required
depends on the sensitivity ∆τ=maxφ,φ′maxτφ,τφ′ |τφ−τφ′ | for
all pairs φ, φ′ where |φ1−b| = |φ′1−b| and φpub = φ′pub. How-
ever, ∆τ can often be a significant fraction of τλ,n,m as it is
taken over all φ′ of a certain length, including, e.g., crypto-
graphic instances [20]. This is far larger of a sensitivity than
DP mechanisms naturally work well with. For example, apply-
ing the load overestimating techniques from [23, 28] would
lead to increasing the runtime by ≈ 40 ·∆τ/ε giant steps on
average [23], while we ideally want ε < 1 and certainly desire
it to be small [18].

When applying DP outside its origin in private statistical
data analysis, a common technique is to reduce the anonymity
set by restricting the sensitivity to some other definition of
pairs of "adjacent" instances [15]. However, it is unclear how
to do this for SAT instances in a reasonable way. Character-
izing what makes SAT instances natural is a deeply rich and
complex question with numerous mathematical and empirical
notions in the literature – clause density, treewidth, backdoors,
modularity, etc. [7, 20]. There is no immediately apparent way
to decide which formulas to include in a definition of adja-
cency based on these metrics, nor how to prove a usefully
reduced sensitivity from them. Alternatively, in some settings
empirical analysis might show that distributions of runtimes
are nicely clustered for both SAT and UNSAT instances, al-
lowing noise calibrated to smaller sensitivities justified on
those statistics. But even then the sensitivity may very well
require impractical noise.

We mostly leave these questions open. One potential di-
rection might be to make a leap in logic and characterize
the output of the mechanism as the proportion τ/τλ,n,m. The
exponential mechanism [18] could then be used with buck-
eting of runtimes and an MPC outcome selection similar to

the approach used in Algorithm 6. Though this is not justi-
fied on first principles it may be defensible. In private data
analysis the sensitivity of a uniquely identifying query (e.g.,
"count ‘John Doe with UID: 1234’ entries in the database")
exactly captures the worst-case information leakage. Since
the leakage from SAT runtimes is arguably much coarser, the
proportion of the available time used may be a more natural
interpretation of leakage than the actual number of giant steps.
But such an approach would compromise the firm foundations
of the DP guarantee.

Preprocessing Optimizations. Continuing along the lines
of trading off efficiency for leakage, we briefly raise a few
potential preprocessing optimizations. In general, developing
a suite of similar such techniques, as well as an understanding
of the tradeoffs they bring, may be a rich avenue for future
work.

1. Though private set disjointedness is likely unreasonable
over the (often massive) set of valid models, it could be
used to find unit clause conflicts before initializing the
full SAT solver. For example, suppose φ1 has forced vari-
ables pos0 = {v1, v3}, and neg0 = {v17}, i.e., v1 = 1, v3 =
1, v17 = 0 must all necessarily be assigned. If φ1 has forced
pos1 = {v1, v9} and neg1 = {v3}, then the Pi could de-
termine that |pos0∩neg1|+ |neg0∩pos1|> 0 and output
UNSAT immediately. The tradeoff would be to leak infor-
mation about the composition of these sets.

2. Another potential technique would be to allow parties to
provide “hints”, i.e., partial models which satisfy (part of)
their formula. In particular, each party could provide a set
of assignments which resolve especially tricky structures
within their input. By loading all of these hints into an-
other oblivious stack they could each be explored from,
ultimately falling back on an empty model if none are
successful.

3. A final idea applies when φ can be split into subsets of
clauses all of which are independent from each other in
terms of the variables they reference. For example, φ =
(v1)∧ (v1 ∨ v2)∧ (v3 ∨ v4) may be split into φa = (v1)∧
(v1∨v2) and φb = (v3∨v4). If the Pi are willing to leak the
variable inclusions in these subinstances it would allow
running them independently, potentially reducing costs as

(2n1 logn1) · · ·(2nk lognk)≤
(2n1 + · · ·+2nk) log(n1 + · · ·+nk).

for k subinstances each of ni variables for i ∈ [k]. Privately
finding these subinstances could be done through an oblivi-
ous breadth-first search for strongly connected components
over the adjacency graph of φ, adapting from [8].

3000 31st USENIX Security Symposium USENIX Association

	Introduction
	Notation
	Challenges and Contributions

	Preliminaries
	Overview of DPLL
	Cryptographic Preliminaries

	Overview
	Formalizing ppSAT Security
	Oblivious DPLL

	A ppSAT Solver
	Data Structures for CNF Formulas
	Data-Oblivious ppSAT Solving
	ppSAT Decision Heuristics
	Complexity
	Obliviousness and Security

	Evaluation
	Micro Benchmarks for Single Giant Steps
	Solving Benchmarks
	Comparison to Plaintext Solvers

	Conclusion
	Details of Our Security Definition
	Instantiating the ADS for n
	Subroutine Definitions
	Additional Considerations

