
‘Put the Car on the Stand’: SMT-based Oracles for
Investigating Decisions

Samuel Judson

samuel.judson@yale.edu

Yale University

USA

Matthew Elacqua

matt.elacqua@yale.edu

Yale University

USA

Filip Cano

filip.cano@iaik.tugraz.at

Graz University of Technology

Austria

Timos Antonopoulos

timos.antonopoulos@yale.edu

Yale University

USA

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Graz University of Technology

Austria

Scott J. Shapiro

scott.shapiro@yale.edu

Yale Law School & Yale University

USA

Ruzica Piskac

ruzica.piskac@yale.edu

Yale University

USA

Abstract
Principled accountability in the aftermath of harms is essential to

the trustworthy design and governance of algorithmic decision

making. Legal theory offers a paramount method for assessing cul-

pability: putting the agent ‘on the stand’ to subject their actions

and intentions to cross-examination. We show that under minimal

assumptions automated reasoning can rigorously interrogate algo-

rithmic behaviors as in the adversarial process of legal fact finding.

We use the formal methods of symbolic execution and satisfiability

modulo theories (SMT) solving to discharge queries about agent

behavior in factual and counterfactual scenarios, as adaptively for-

mulated by a human investigator. We implement our framework

and demonstrate its utility on an illustrative car crash scenario.

CCS Concepts
• Applied computing → Law; • Theory of computation →
Automated reasoning; Logic and verification.

Keywords
algorithmic decision making, algorithmic accountability, formal

methods, SMT solving, symbolic execution

ACM Reference Format:
Samuel Judson, Matthew Elacqua, Filip Cano, Timos Antonopoulos, Bettina

Könighofer, Scott J. Shapiro, and Ruzica Piskac. 2024. ‘Put the Car on the

Stand’: SMT-based Oracles for Investigating Decisions. In Symposium on
Computer Science and Law (CSLAW ’24), March 12–13, 2024, Boston, MA, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3614407.3643699

This work is licensed under a Creative Commons Attribution International

4.0 License.

CSLAW ’24, March 12–13, 2024, Boston, MA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0333-1/24/03

https://doi.org/10.1145/3614407.3643699

1 Introduction
Our lives are increasingly impacted by the automated decision mak-

ing of AI. We share roads with autonomous vehicles, as healthcare

providers use algorithms to diagnose diseases and prepare treat-

ment plans, employers to automate hiring screens, and even judges

to analyze flight and recidivism risks. Though the creators of AI

often intend it to improve human welfare, it is a harsh reality that

algorithms often fail. Automated decision makers (ADMs) are now

deployed into roles of immense social responsibility even as their

nature means they are not now, and likely will never be, trustwor-

thy enough to do no harm. When autonomous vehicles drive on

open roads they cause fatal accidents [Smiley 2022]. Classification

and scoring algorithms perpetuate race- and gender-based biases

in hiring and recidivism evaluations, both characteristics legally

protected from discrimination in many countries [Angwin et al.

2016; Dastin 2018; Kroll et al. 2017]. Both the rule of law and a more

ordinary sense of justice demand that society hold accountable

those responsible and answerable for harms. In this work, we inves-

tigate how formal methods can aid society and the law in providing

accountability and trust in a clear, rigorous, and efficient manner

through SMT-based automated reasoning.

Ideally, computer scientists would verify decision making algo-

rithms to confirm their correctness before deployment. Using the

techniques of program verification discrimination and other social

harms would be automatically detected and eliminated by engineers

before ADMs appear in the field. Unfortunately, the formal verifica-

tion of these algorithms is undecidable in the general case, and even

when theoretically possible will often require computational power

that can make the task uneconomical, if not practically infeasible.

Additionally, writing specifications for algorithmic decision making

often treads onto contentious questions of law and policy with no

universally agreed upon, let alone formalizable, answers [Kroll et al.

2017]. Nevertheless, assessing responsibility for harms remains

vital to the safe use of ADMs.

To better understand the concept of accountability, consider a

case in which one autonomous car hits another. We can ask: Which

car is responsible for the accident? Which made the error, and

https://doi.org/10.1145/3614407.3643699
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3614407.3643699
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3614407.3643699&domain=pdf&date_stamp=2024-03-12

CSLAW ’24, March 12–13, 2024, Boston, MA, USA Judson et al.

to what end? When human drivers crash, lawyers investigate the

drivers’ reasoning and actions. Did the drivers intend to hit the

other car? Did the drivers know that an accident would occur?

To infer drivers’ intentions, lawyers engage in direct and indirect

examination to uncover the decision logic that lead to the accident.

Standard notions of due process view this opportunity to mount

a defense as essential to justice. A person must be permitted to

explain and justify themselves through arguing the facts of the

case [Edwards 2021]. For example, if a human driver can convince

a jury the crash was an unforeseeable accident, then they may

be subject to lesser penalties than had they acted intentionally or

negligently. A self-driving car cannot do likewise. Like a person,

an ADM makes unsupervised decisions in complex environments

which can lead to harm. But very much unlike a person, an algo-

rithm cannot simply walk into a courtroom and swear to tell the

whole truth.

ADMs leave us with the traditional need for explanation but –

as a program and not a mind – without the traditional means for

acquiring one. Still, a program can be translated into logic, and

logic can be rigorously reasoned about. While an algorithm may

not be able to defend itself under interrogation, we show the right

formal method can absolutely advocate on its behalf. And at least

in one sense, a formal method makes for a better witness than a

human – while the human can lie, the car cannot. The provable

rigor of our approach guarantees that whatever answers we get

from the decision algorithm are both accurate and comprehensive.

1.1 Contribution
We developed a method and tool, soid, for applying automated

reasoning to ‘put the algorithm on the stand’ in cases where its

correct behavior cannot be reduced to a practically verifiable formal

specification. Using soid, an investigator can pose tailored factual
and counterfactual queries to better understand the functional in-

tention of the decision algorithm, in order to distinguish accidents

from honest design failures from malicious design consequences.

Our method also generates counterexamples and counterfactuals

to challenge flawed conclusions about agent behavior – just as

would a human assisting in their own defense. We assume only

access to a program 𝐴 implementing a decision making algorithm

A as granted by its controller. Our method supports three types of

queries: factuals (‘did the agent do...’),might counterfactuals (‘might

the agent have possibly done...’), and would counterfactuals (‘would
the agent have necessarily done...’) [Lewis 2013]. We formally define

each in §3. The distinction between ‘would’ and ‘might’ counter-

factuals is foundational to their treatment in philosophy [Lewis

2013]. Logically, we implement ‘might’ counterfactuals using the ∃
operator, and ‘would’ counterfactuals using ∀.

We have also implemented an example of a domain-specific

graphical user interface (GUI) that allows operation of soid with-

out requiring technical expertise, but here describe how it works

directly. The investigator starts from the logs of 𝐴, the factual in-

formation within capturing the state of the world as the agent

perceived it. These logs can be easily translated into a first-order

formalism as a sequence of equalities. For example, in the left panel

of the car crash diagrammed in Figure 1 the information in the

logs of 𝐴 (blue at bottom) about the other car (red at left) might be

Figure 1: A broadside car crash rendered in the soid GUI.
encodable as a system of equalities

𝜑 ≡ agent1_pos_x = 1.376 ∧ · · ·
∧ agent1_signal = RIGHT ∧ · · · . (1)

In the GUI all such statements are translated into formal logic

automatically. Using the automated reasoning method of symbolic

execution, we can answer queries aboutwhat the car did under these

constraints by checking formula entailment. Posing counterfactual

queries requires manipulating the state of the world since such

queries ask howwould the agent react if the situation were different.

Counterfactuals can be encoded by substituting constraint values

𝜑 ′ ≡ 𝜑 [(agent1_pos_x = 1.376) ↦→
(agent1_pos_x = 1.250)] . (2)

This formalism also allows us to reason about whole families of

counterfactuals, which can be defined by relaxing the constraints

and negating the original factual state as a valid model

𝜑 ′′ ≡ 𝜑 [(agent1_pos_x = 1.376) ↦→
(1.0 ≤ agent1_pos_x ≤ 1.5)] ∧ ¬𝜑. (3)

In this way, hypothetical-but-similar scenarios of interest to the

investigator (‘what if that car was outside instead of inside the inter-

section?’, ‘what if the car was signaling a turn instead of straight?’)

can be rigorously formalized to enable automated analysis of the

agent’s behavior.

We use SMT-based automated reasoning [Baldoni et al. 2018;

Cadar et al. 2008; Moura and Bjørner 2008] for the oracle that

answers the factual and counterfactual questions the investigator

asks. Each query and its answer helps the expert investigator to

build a body of knowledge, the Facts, about the decision logic used

in the autonomous agent. The investigator then decides when to

terminate the investigation when they have enough information

for the final judgement of an agent’s culpability.

1.2 Related Work
Formal methods for accountability are a burgeoning research topic,

both in general [Baier et al. 2021a; Chockler and Halpern 2004;

Datta et al. 2015; Feigenbaum et al. 2020; Halpern and Pearl 2005a,b;

Küsters et al. 2010] and focused on specific domains including auto-

mated and economic decision making [Baier et al. 2021b,c; Ghosh

and Meel 2019; Kroll et al. 2017; Su et al. 2015] and security [Feigen-

baum et al. 2011; Künnemann et al. 2019]. In particular, a recent

work uses such methods to investigate similar questions to ours

under stronger modeling assumptions [Cano Córdoba et al. 2023].

Trustworthy algorithmic decision making is now a major focus

SMT-based Oracles for Investigating Decisions CSLAW ’24, March 12–13, 2024, Boston, MA, USA

of classical formal methods research as well [Alshiekh et al. 2018;

Christakis et al. 2021; Dreossi et al. 2019; Garcıa and Fernández

2015; Gehr et al. 2018; Katz et al. 2019; Singh et al. 2019]. Intention

and its relationship to responsibility is a central focus of law and

the philosophy of action, with a cross-discipline history dating back

millennia [Beebee and Menzies 2019; Lewis 2013; Moore 2019; Starr

2021; Wachter et al. 2017], including an extensive modern focus on

(often symbolic) automated decision making in particular [Bratman

1987; Cohen and Levesque 1990; Rao and Georgeff 1991]. Counter-

factual reasoning is accordingly a significant topic in Explainable

AI (XAI) [Adadi and Berrada 2018; Arrieta et al. 2020; Guidotti et al.

2018; Padovan et al. 2023], using both logical [Chockler and Halpern

2004; Halpern and Pearl 2005a,b] and statistical methods [Wachter

et al. 2017]. SMT solving [Barrett et al. 2021; Moura and Bjørner

2008] and symbolic execution [Baldoni et al. 2018; Cadar et al. 2008],

are both foundational topics in automated reasoning.

Technically, our approach differs from the already significant

body of work in counterfactual analysis of algorithmic decision

making in two significant ways: in our analysis of executable code

‘as it runs’ – rather than just of a partial component (such as an

ML model in isolation) or of some higher-level mathematical ab-

straction of the system – and in our reliance on formal verification.

By analyzing the code itself, rather than an idealized abstraction or

particular model, we can capture behaviors of the entire software

system: preprocessing, decision making, postprocessing, and any

bugs and faults therein. This makes our analysis more complete.

In §6.2, for example, we consider a hypothetical case study where an

instance of API misusage – rather than any mistakes of logic within

the code itself – undermines a machine learning decision. The deci-

sion and its consequences are not analyzable by considering only

the (correct on its own terms) decision model alone.

Meanwhile, verification technologies allow us to analyze all pos-
sible executions obeying highly expressive pre- and post-conditions.
SMT-based methods in particular provide the full expressiveness

of first-order logic. As such, our approach can encode entire fam-

ilies of counterfactuals in order to provide a broad and thorough

picture of agent decision making, so as to better interpret responsi-

bility. Prevailing, often statistical methods, commonly focus more

on gathering explanations prioritized on informal measures, such

as minimality or diversity criteria, in order to demonstrate causality,

see e.g., [Mothilal et al. 2020; Wachter et al. 2017]. Informally, in

computer science terms, this distinction is analogous to that in

automated reasoning between methods for verification – which

emphasize overall safety and the correctness of the set of all pro-

gram traces provably meeting some logically expressed property

– and methods like testing or fuzzing that focus on finding or ex-

cluding representative executions believed to exemplify that prop-

erty [Abebe et al. 2022]. Of course (SMT-based) verification does

have costs – it carries substantially more computational complexity

than testing approaches, which can increase compute costs and

limit scalability. Accordingly, we implement and benchmark the

empirical efficacy of our method in a laboratory environment in §6.

In human terms, our approach is analagous to enabling asking

broad, positive questions about agent behavior under a coherent

family of scenarios, rather than asking questions aimed primarily at

generating or falsifying a particular claimed explanation for a (fac-

tual or counterfactual) decision. The work of [Cano Córdoba et al.

2023] and VerifAI [Dreossi et al. 2019] are the related approaches of

which we are aware most similar to our own in goals and method,

although the former requires stronger modeling assumptions while

the latter sacrifices some formal guarantees for scalability.

2 Motivation
To illustrate the purpose of soid, we continue with the crash from

Figure 1. In the left panel the autonomous vehicleA (blue at bottom)

perceived that the other car (red at left) had its right turn signal

on. Call this time 𝑡∗. When A entered the intersection – believing

the action to be safe, even though it lacked the right-of-way –

the other car proceeded straight, leading to a collision. Because

it did not possess the right-of-way, A is culpable for the crash.

This scenario forms the basis for our benchmarks in §6, where the

specific question we investigate with soid is ‘with what purpose

did A move, and so to what degree is it culpable for the crash?’

Note that the actions ofA are consistent with with three signifi-

cantly different interpretations:

i a reasonable (or standard) A drove carefully, but proceeded

straight as is common human driving behavior given the (per-

ception of an) indicated right turn;

ii an impatient A drove with reckless indifference to the risk

of a crash; and

iii a pathological A drove to opportunistically cause crashes

with other cars, without unjustifiable violations of traffic laws

such as weaving into an oncoming lane.

Even for the same act, these different interpretations will likely lead

to drastically different liabilities for the controller under criminal

or civil law. Interestingly, the natural language explanations for

the i) reasonable and iii) pathological cars are identical: ‘moving

straight would likely not cause a crash, so proceeding would bring

me closer to my goal’. Nonetheless, counterfactual queries (notated

2→) can help distinguish between these candidate interpretations.

at 𝑡∗

2→ Could a different turn signal have led A to remain

stationary?

2→ If A had arrived before the other car, and that other

car was not signaling a turn, would A have waited? (e.g.,
to ‘bait’ the other car into passing in front of it?)

Interpretation i) is consistent with (yes, no), ii) with (no, no), and iii)
with (no, yes). Note the adaptive structure of our questions, where
the second query can be skipped based on the answer to the first.

The goal of soid is to enable efficient and adaptive investigation of

such queries, in order to distinguish the computational reasoning

underlying agent decisions and support principled assessment of

responsibility. Although autonomous vehicles provide an insightful

example, soid is not limited to cyberphysical systems. In §6.2 we

use soid to analyze a buggy application of a decision tree leading

to a health risk misclassification.

2.1 Legal Accountability for ADMs
Before presenting the technical details of soid, we also overview

how the philosophy and practice of legal accountability might apply

to ADMs, and somotivate the analysis soid is designed to enable.We

work in broad strokes as the legal liability scheme for ADMs is still

CSLAW ’24, March 12–13, 2024, Boston, MA, USA Judson et al.

being developed, and so we do not want to limit our consideration

to a specific body of law. This in turn limits our ability to draw

specific conclusions, as disparate bodies of law often place vastly

different importance on the presence of intentionality, negligence,

and other artifacts of decision making.

A core principle of legal accountability is that the ‘why’ of a

wrongful act is almost always relevant to evaluating how (severely)

liable the actor is. In the words of the influential United States

Supreme Court justice Oliver Wendell Holmes, ‘even a dog distin-

guishes between being stumbled over and being kicked.’ As every

kick has its own reasons bodies of law often distinguish further –

such as whether the ‘why’ is an active intent to cause harm. Though

holding algorithmic agents accountable raises the many technical

challenges that motivate soid, once we understand the ‘why’ of an

algorithmic decision we can still apply the same framework of our

ethical and legal practices we always use for accountability [Hal-

levy 2013; Kroll et al. 2017]. The algorithmic nature of a harmful

decision does not invalidate the need for accountability: the locus

of Holmes’ adage lies in the harm to the victim, being justifiably

more aggrieved to be injured on purpose or due to a negligent

disregard of the risk of a kick than by an accidental contact in the

course of reasonable behavior. In practice, even though criminal

law and civil law each place different emphasis on the presence

of attributes like intention and negligence in a decision, intention

in particular almost always matters to – and often intensifies –

an agent’s liability. Any time the law penalizes an unintentional

offense it will almost always punish an intentional violation as

well, and should intention be present, the law will usually apply

the greatest possible penalties authorized for the harm. Given the

importance of recognizing intention, soid is designed to support

rigorous and thorough findings of fact about algorithmic decisions

from which a principled assessment of their ‘why’ can be drawn.

Taking a step back, it is deeply contentious whether ADMs now

and in the future can, could, or should possess agency, legal per-

sonhood, or sovereignty, and whether they can ever be morally

and legally responsible [Müller 2023]. Even the basic nature of

computational decision making is a significant point of debate in

artificial intelligence and philosophy, with a long and contentious

history [Bratman 1987; Cole 2020]. For the moment, ADMs are

not general intelligences. They will likely not for the foreseeable

future possess cognition, agency, values, or theory of mind, nor

will they formulate their own goals and desires, or be more than

‘fancy toasters’ that proxy the decision making agency and respon-

sibility of some answerable controller. An algorithm is no more

than a computable function implemented by symbolic manipu-

lation, statistically-inferred pattern matching, or a combination

thereof. Nonetheless, even working off the most stringent rejection

of modern ADMs forming explicit knowledge or intentional states,

following Holmes we can see there is still value in grading the

severity of a harmful decision. It is deeply ingrained in our gov-

erning frameworks for legal and moral accountability that when

acting with the purpose of harm an agent (or its controller) has

committed a greater transgression than in the case where the harm

was unintended.

In this work we sidestep whether and how computers can pos-

sess intentionality by viewing intention through a functionalist lens.

Even for conscious reasoning, it is impossible to replay a human

being’s actual thought process during a trial. So in practice, legal

definitions refer instead to an ex post rationalization of the agent’s

decisions made by the accountability process through the finding

of fact. A person is assessed to have, e.g., purposely caused harm if

the facts show they acted in a way that is consistent with purpose-

ful behavior. We can approach computational reasoning in much

the same way, with an investigator making an ex post descriptive
rationalization capturing their understanding of an ADM’s decision

making. This understanding then justifies a principled assessment

of the controller’s responsibility. For example, a controller can be

assessed to have released into the world an ADM that the facts

show acted in a way that is consistent with a purposeful attempt

to cause harm. The design and algorithmic processes of the agent

are otherwise irrelevant. How the ADM actually decision makes –

whether through statistical inference or explicit goal-oriented deci-

sion logic or otherwise – is relevant only with respect to our ability

to interrogate its decision making. This approach is consistent with

soid, which is capable of analyzing arbitrary programs.

An investigator using soid to label an ADM as ‘reasonable’ or

‘reckless’ or ‘pathological’ or similar is, however, only the start.

How such an assessment should then be interpreted and used by an

accountability process is, ultimately, a policy question. The unset-

tled nature of the laws, policies, and norms that govern ADMs, both

for now and into the future, means there are many open questions

about the relevance of the intent of an ADM and its relationship to

the intent of the controller. But we can consider the ramifications

in broad strokes. For individuals harmed by ADMs (whether as con-

sumers, other end-users, or just unlucky ‘bystanders’), the situation

seems little different than for human misconduct: the finding of

intent amplifies the harm, and the victim can reasonably expect

the accountability process to penalize the transgressor appropri-

ately. More specific questions are harder. Should apparent intent

in both the controller and ADM be assessed more harshly than in

one or the other alone? Or would apparent intent in the controller

render the actions of the ADM relevant only in how successfully

the intent of the controller was carried out? How should an emer-

gent ‘algorithmic intent’ traceable to software faults interact with

any documented, contrary evidence of the intent of the controller?

These questions lay beyond the scope of this work, but they are

each dependent on our capacity to first recognize and distinguish

the functional intent of the ADM, motivating our research goals.

For the controllers of ADMs (whether as programmers, vendors,

owners, or sovereign states), it is a natural starting point to view

them as responsible for the actions of their computational agents,

just as they would (most often) be responsible for human agents

acting on their behalf. With reward comes responsibility. If a con-

troller profits from deploying an ADM, so must they bear the costs

of its harms. Legal concepts governing humans acting on behalf or

through each other or organizations are well-founded throughout,

e.g., agency and criminal law [Hallevy 2013; Legal Information In-

stitute 2023]. These mechanisms may be either directly applicable

or can form the basis for analogous systems governing algorith-

mic accountability. For example, just as a business is expected to

adequately prepare (i.e., train) a human agent to operate on their

behalf without causing harm, a controller can be expected to ade-

quately prepare (i.e., design or train) a computational agent. What

standard the controller sets internally ex ante before deploying the

SMT-based Oracles for Investigating Decisions CSLAW ’24, March 12–13, 2024, Boston, MA, USA

ADM is primarily relevant insofar as it provides confidence to the

controller the ADM will not be found ex post to have operated in

a way consistent with an intent to harm – and so carry with it a

corresponding increase in liability.

Grounding our approach in the functionalist perspective also

helps us manage difficult questions about the validity of anthropo-

morphizing algorithmic systems through the use of language like

‘intent’, ‘beliefs’, or ‘reasonableness’, as we ourselves have done

throughout §2. It is not immediately clear such language is intrinsi-

cally confusing or harmful: the use of such labels in characterizing

automated decision making is decades-old, to the extent that consid-

eration of whether and how machines can form intentional states

has informed how prevailing approaches in the philosophy of action

now capture whether and how humans form them [Bratman 1987;

Bratman et al. 1988]. Moreover, as accountability processes begin to

wrestle with algorithmic decision making some anthropomorphiza-

tion is perhaps unavoidable, due to the often heavily analogical

nature of legal reasoning [Levi 1947]. We ourselves invoked the

analogy of Holmes to frame our discussion. The validity of some

such analogies are in some cases already contentious. For example,

whether the ‘creativity’ required to earn authorship under copy-

right law must necessarily be human is under active consideration

in litigation and scholarship concerning generative models [tha

[n. d.]; Dornis 2020]. On the other hand, the negative consequences

of anthropomorphizing ADMs has been itself widely recognized in

scholarship and science fiction dating back decades: it can cause us

to, e.g., ascribe to machines and their actions non-existent morality

and common sense, or grow attached to them in ways that cause

us to disregard their harms or cloud our judgement of their true

capabilities and limitations.

To avoid conflation, perhaps machine analogues to terms like

‘intention’ will arise. But wherever the legal and policy language

settles, the core philosophical principle – that a functional interpre-

tation of the ‘why’ of a decision matters for accountability – will

hold. So long as the philosophical (and computational) principles

remain, the goals of our research should likewise remain applicable

no matter what norms of language develop.

3 Technical Background
In this section we present some relevant foundations for soid from

formal and automated reasoning.

3.1 Programs and Traces
Let 𝐴 be the program instantiating a decision algorithm A. 𝐴

operates over a finite set of program variables var(𝐴) = 𝑉 =

{𝑣1, . . . , 𝑣𝑛}. We view var(𝐴) as a union of disjoint subsets 𝑉 =

𝐼 ∪ 𝐷 . The set 𝐷 = {𝑣𝑑1, . . . , 𝑣𝑑𝑛𝐷
} is the set of internal decision

variables. The set of input variables 𝐼 = 𝐸 ∪ 𝑆 is itself partitioned

into sets of environment variables 𝐸 = {𝑣𝑒1, . . . , 𝑣𝑒𝑛𝐸
} and state

variables 𝑆 = {𝑣𝑠1, . . . , 𝑣𝑠𝑛𝑆 }. Therefore 𝑛 = 𝑛𝐸 + 𝑛𝑆 + 𝑛𝐷 . 𝐸 is

composed of variables encoding input sources external to the agent,

while 𝑆 is composed of variables encoding internal state.

Every 𝑣𝑖 is associated with a domain D𝑣𝑖 . A state is the com-

position of the variable assignments at that point of the execu-

tion 𝜎 ∈ D = (D𝑣1 × · · · × D𝑣𝑛). Given 𝜎 = (d1, . . . , d𝑛) ∈ D,

we denote the restriction to only environment variables as 𝜎 |𝐸 =

(d1, . . . , d𝑒𝑛𝐸) ∈ D𝑒1 × · · · × D𝑒𝑛𝐸
, and similarly for 𝜎 |𝑆 , 𝜎 |𝐼 , and

𝜎 |𝐷 . A trace 𝜏 = 𝜎1𝜎2𝜎3 . . . is a (possibly infinite) sequence of states.

We access states by 𝜏 (𝑡) = 𝜎𝑡 , and values of variables at states by

𝜎 (𝑣𝑖) = d𝑖 . The set of possible traces is governed by a transition

relation 𝑅 ⊆ D × D, so that 𝜏 (𝑡) = 𝜎 and 𝜏 (𝑡 + 1) = 𝜎′ may occur

within some 𝜏 only if (𝜎, 𝜎′) ∈ 𝑅. The program 𝐴 encodes a par-

tial transition relation, 𝑅𝐴 , with the constraint that (𝜎, 𝜎′) ∈ 𝑅𝐴
requires that ∀𝑖 ∈ [𝑛𝐸] . 𝜎 (𝑣𝑒𝑖) = 𝜎′ (𝑣𝑒𝑖). That is, by definition

𝐴 cannot define how the environment E[A] updates the 𝑣𝑒𝑖 , as
that capacity is exactly the distinction between a program and the

environment it runs within.

We work with statements over the program variables in the logic

QF_FPBV. The available domains are those of floating points and

bitvectors. An expression 𝑒 is built from variables composed with

the constants and function symbols defined over those domains, e.g.,
(fp.to_real b011) + 2.34 · 𝑣14. A formula 𝜑 is built from expressions

and relation symbols composed using propositional operators, e.g.,
the prior expression could extend to the formula (fp.to_real b011) +
2.34 · 𝑣14 ≥ −1.87. If 𝜑 is a formula over var(𝐴) = 𝑉 , notated 𝜑 (𝑉),
and 𝜎 = (d1, . . . , d𝑛) ∈ D, then we write 𝜎 |= 𝜑 (𝑉) if the constant
formula that results from substituting each d𝑖 for 𝑣𝑖 evaluates to

True. We use 𝜑 and𝜓 when writing formulas over 𝐼 that represent

scenarios, 𝛽 when writing formulas over 𝐷 representing decisions

made, and Π when writing formulas over 𝑉 representing whole

program executions.

A symbolic state �̂� = ˆD = (ˆD𝑣1 × · · · × ˆD𝑣𝑛 , 𝜋�̂�) is defined over
a set of symbolic variables symvar(𝐴) = 𝑉 = {𝑣1, . . . , 𝑣𝑛}, with 𝐼 ,

𝐸, 𝑆 , and �̂� defined analogously. Each
ˆD𝑣𝑖 augments the concrete

domain D𝑣𝑖 by allowing 𝑣𝑖 to reference an expression 𝑒𝑖 over a

set of symbolic values {𝛼𝑖 }𝑖∈[𝑘] , e.g., 𝑒𝑖 = 𝛼𝑖 or 𝑒𝑖 = 2𝛼 𝑗 + 3.0. We

write �̂� |= 𝜑 (𝑉) for formulas over symvar(𝐴) analogously to the

concrete case, still in QF_FPBV. The path constraint 𝜋�̂� (𝛼1, . . . , 𝛼𝑛)
is such a formula over the 𝛼𝑖 , which captures their possible settings.

3.2 SMT-based Program Analysis
We overview SMT solving and symbolic execution, and refer the

reader to [Moura and Bjørner 2008] and [Baldoni et al. 2018; Cadar

et al. 2008] respectively for greater detail.

SMT Solving. Satisfiabilitymodulo theory (SMT) solving is a form

of automated theorem proving that computes the satisfiability (and,

by duality, validity) of formulas in certain fragments of first-order

(FO) logic. SMT solvers – we use the state-of-the-art Z3 [Moura

and Bjørner 2008] – are also able to return satisfying models when

they exist. In the case of validity queries, these models are concrete

counterexamples to the disproven theorem. An SMT formula Φ
is a FO-formula over a decidable theory 𝑇 . In this work, we set

𝑇 = QF_FPBV, the combination of quantifier-free formulas in the

theories of floating-points and bitvectors [Barrett et al. 2021]. We

require support for floating-point statements due to their centrality

in machine learning.

Symbolic Execution. One of the great successes of SMT-based pro-

gram analysis, symbolic execution explores the reachable paths of

a program 𝑃 when executed over 𝑉 . Concrete values are computed

exactly, assignments to or from symbolic-valued variables update

CSLAW ’24, March 12–13, 2024, Boston, MA, USA Judson et al.

their expressions, and branching conditions update the path con-

straints. For a branch condition 𝑏 (𝑉) reached at symbolic state �̂� 𝑗 ,

such as a guard for an if-statement or while-loop, an SMT solver is

invoked to check which branches are feasible under 𝜋 𝑗 , i.e., whether
Φ ≡ 𝑏 (𝑉) ∧ 𝜋 𝑗 and/or Φ′ ≡ ¬𝑏 (𝑉) ∧ 𝜋 𝑗 are satisfiable. If only one

is, the execution continues along it and its path constraints are up-

dated. For example, if only Φ′ is satisfiable then 𝜋 𝑗 ← 𝜋 𝑗 ∧ ¬𝑏 (𝑉).
If both are satisfiable, the execution can fork in order to explore all

reachable paths and produce a set of constraint formulas {𝜋𝑖 }𝑖∈[𝑐𝑡]
encoding each path at termination. By setting initial constraints

on the input variables, symbolic execution can narrow the search

space to only the paths of executions meeting preconditions.

3.3 Counterfactual Reasoning
Counterfactuals are essential to modern theories of causation and

responsibility in philosophy and law [Beebee and Menzies 2019;

Lewis 2013; Moore 2019; Starr 2021; Wachter et al. 2017], and are are

already quite prominent in formal methods for accountability [Baier

et al. 2021a,b,c; Chockler and Halpern 2004; Datta et al. 2015; Feigen-

baum et al. 2020; Halpern and Pearl 2005a,b; Wachter et al. 2017].

Causation refers to the influence an input of some process has on

its output, e.g., in an MDP how a choice of action influences the

resultant distribution on (some property of) the next state, or for a

program how changes in the inputs influence the outputs. In the

simplest possible case, an action 𝑎 is an actual cause of an outcome,

such as a harm ℎ, if under every counterfactual 𝑎 is both neces-

sary and sufficient for the harm to occur, notated as 𝑎 2→ ℎ and

¬𝑎 2→ ¬ℎ. Here 𝑎 and ℎ are some domain-specific formal objects,

while the modal notation 𝑥 2→ 𝑦, popularized by Lewis [Lewis

2013], means if 𝑥 had happened, then 𝑦 would have happened. The
canonical unified logical and computational treatment of counter-

factuals are the works of Pearl and Halpern [Halpern and Pearl

2005a,b], which provide a directed acyclic graph-based formalism

able to inductively model causal effects in far more complicated

dependency structures.

Responsibility is a higher-order property than causality. As raised

in §2, counterfactuals of decision making are essential to interro-

gating intention and with it responsibility. Put simply, counterfac-

tuals enable challenging and verifying proposed explanations for

an agent’s decisions. Importantly, counterfactual analysis is well-

defined independent of any specific decisions, or the inferences

about agent intention made on the basis of them. So although we of-

ten frame our discussion in terms of behaviors that match common

understanding of human decision making, we stress our formal

approach would generalize to future models of algorithmic decision

making interested in very different attributes and behaviors than

those we apply to humans.

Formalism. Working ex post, we formalize counterfactual algo-

rithmic decision making by starting from a set of factual traces
𝑇 𝑓 = {𝜏 𝑓

1
, . . . , 𝜏

𝑓

𝑘
} encoding a history of 𝐴’s harmful or otherwise

relevant decisions. A counterfactual 𝜏𝑐 𝑓 = (𝜏 𝑓 , 𝜏𝑝𝑝 , 𝑡∗) is a tuple of
a factual trace 𝜏 𝑓 , a past possibility trace 𝜏𝑝𝑝 , and an integer 𝑡∗ ∈ N
that we call the keyframe. We write 𝜏𝑐 𝑓 .fst = 𝜏 𝑓 and 𝜏𝑐 𝑓 .snd = 𝜏𝑝𝑝 .

Intuitively, we want counterfactuals to represent the decisions that

A would have made in revealing alternate circumstances. What

makes a counterfactual ‘revealing’ is a deep and nuanced question,

but the philosophy of action highlighs the importance of particular

attributes for counterfactual scenarios to be meaningful. We enforce

these tenets as predicates, in order to guarantee that our method

works for counterfactuals possessing them.

(1) Non-backtracking: Counterfactuals should encode scenarios

with a meaningful relationship to observed events, and should

not require us to ‘replay’ the evolution of the world under sig-

nificant changes to past history. Formally, both 𝜏 𝑓 and 𝜏𝑝𝑝 must

be defined at 𝑡∗, and must agree up until it:

nbt(𝜏𝑐 𝑓) ≡ ∀𝑡 ′ . 𝑡∗ < |𝜏 𝑓 | ∧ 𝑡∗ < |𝜏𝑝𝑝 | ∧(
𝑡 ′ < 𝑡∗ → 𝜏 𝑓 (𝑡 ′) = 𝜏𝑝𝑝 (𝑡 ′)

)
.

Every past possibility trace forms a non-backtracking counter-

factual for 𝑡∗ = 1, so usually choice of keyframe will come first

from some a priori understanding the investigator has about

the critical decision moments leading to a harm.

(2) Scope of Decisions: In order to clarify the purpose of an agent’s

actions, what an agent might have done is less important than

what it would have decided to try to do. In complex systems the

former is often contaminated by the decisions of other agents

and the evolution of the environment, as agents rarely have

complete control over outcomes. To clarify this distinction, we

enforce a scope to the decision making of A by limiting past

possibility traces to internal reasoning. No transition after 𝑡∗

may update the valuations of 𝐸.

scope(𝜏, 𝑡∗) ≡ ∀𝑡 ′∀𝑖 ∈ [𝑛𝐸] . 𝑡∗ < 𝑡 ′ →
𝜏 (𝑡 ′ − 1) (𝑣𝑒𝑖) = 𝜏 (𝑡 ′) (𝑣𝑒𝑖).

This scope constraint can be interpreted as formalizing that we do

not require or use access to an environmental model E[A].
An admissible counterfactual is both non-backtracking and lim-

ited in scope:

admit(𝜏𝑐 𝑓) ≡ nbt(𝜏𝑐 𝑓) ∧ scope(𝜏𝑝𝑝 , 𝑡∗) .

In order to use automated reasoning to interrogate A’s decision

making history (in the form of 𝑇 𝑓
), we need to formalize the se-

mantics of two different families of trace properties:

factuals : 𝜏 𝑓
?

|= 𝜑 (𝐼) →A,𝑡,ℓ 𝛽 (�̂�)
when faced with 𝜑 at time 𝑡 , did A do 𝛽 at time ℓ?

counterfactuals : 𝜏𝑐 𝑓
?

|= 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�)
if faced with 𝜑 at time 𝑡∗, would A have done 𝛽 at time ℓ?

We begin with factuals. In order to formulate a useful semantics

for this predicate, we need a reasonable interpretation of the subse-

quence 𝜏 𝑓 (𝑡) . . . 𝜏 𝑓 (ℓ) that the property implicitly analyzes. Work-

ing after-the-fact justifies one: as a window of agency, during which
either A made a decision or failed to do so as a harm played out.

If the window of agency was still open, we could not be working

ex post. We can then formulate a semantic definition in which 𝜑 (𝐼)
specifies preconditions on the inputs to 𝐴, and 𝛽 (�̂�) then specifies

post-conditions on its decision variables, limited in scope and to

SMT-based Oracles for Investigating Decisions CSLAW ’24, March 12–13, 2024, Boston, MA, USA

the window of agency.

𝜏 𝑓 |= 𝜑 (𝐼) →A,𝑡,ℓ 𝛽 (�̂�)

if scope(𝜏 𝑓 , 𝑡) and 𝜏 𝑓 (𝑡)
���
𝐼
|= 𝜑 (𝐼) and 𝜏 𝑓 (ℓ)

���
𝐷
|= 𝛽 (�̂�).

On the contrary, for counterfactuals it is not obvious that we can

assume a known and finite window. As 𝜏𝑝𝑝 (𝑡∗) may have never

been observed it could lead to 𝐴 looping forever, and without an

E[A] we cannot know how long the window would last. However,

as counterfactuals are objects of our own creation, we will assume

that the investigator can conjecture a reasonable window [𝑡∗, ℓ]
within which the decision ofA must be made in order to be timely,

with responsibility attaching to the agent if it is unable to make a

decision within it. This assumption guarantees termination.

With this philosophically distinct but mathematically equivalent

assumption, we are able to define the semantics of the counterfac-

tual operator as

𝜏𝑐 𝑓 |= 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�)

if admit(𝜏𝑐 𝑓) and 𝜏 𝑓 (𝑡∗)
���
𝐼
̸ |= 𝜑 (𝐼) and

𝜏𝑝𝑝 (𝑡∗)
��
𝐼
|= 𝜑 (𝐼) and 𝜏𝑝𝑝 (ℓ)

��
𝐷
|= 𝛽 (�̂�).

In practice, our use of symbolic execution will abstract away these

details by framing the scope and the window of agency so that

admit(𝜏𝑐 𝑓) is true by construction. We discuss this formally in §5.1.

Lastly, we will oftentimes discuss families of counterfactuals,
which are sets of counterfactuals which share a factual trace

𝑇𝑐 𝑓 = {𝜏𝑐 𝑓
1
, . . . , 𝜏

𝑐 𝑓

𝑘 ′
| ∀𝑖, 𝑗 ∈ [𝑘′] . 𝜏𝑐 𝑓

𝑖
.fst = 𝜏

𝑐 𝑓

𝑗
.fst}.

Families of counterfactuals can naturally be defined implicitly by a

tuple ctx = (𝜏 𝑓 , 𝑡∗, 𝜑) as

𝑇
𝑐 𝑓

ctx = {𝜏𝑐 𝑓 | admit(𝜏𝑐 𝑓) and 𝜏𝑐 𝑓 .fst(𝑡∗) ̸|= 𝜑 (𝐼)

and 𝜏𝑐 𝑓 .snd(𝑡∗) |= 𝜑 (𝐼)}.
Choice of context ctx will be our usual way of delineating families,

especially as 𝜑 then provides a descriptive representation.

4 Formal Reasoning for Accountability
Given a program 𝐴 and log of factual executions 𝑇 𝑓

, soid aims to

provide an interactive, adaptive procedure for the investigator to

refine a set Facts of trace properties capturing how 𝐴 behaves in

𝑇 𝑓
and related counterfactuals, just as in a legal finding of fact. We

call this counterfactual-guided logic exploration. Our end goal is for

soid to is to enable continuous refinement of a formal representation
of A’s decision making:

Facts = {. . . ,
(
𝜏
𝑓

𝑖
, 𝜑𝑖 (𝐼) →A,𝑡,ℓ 𝛽𝑖 (𝑉)

)
, . . .} ∪

{. . . ,
(
𝜏
𝑐 𝑓

𝑗
, 𝜑 𝑗 (𝐼) 2→A,𝑡∗,ℓ 𝛽 𝑗 (𝑉)

)
, . . .}.

Each fact in Facts is composed of a (counter)factual trace and a

property that holds over it, as proven by an SMT solver. Since we do

not assume access to some overarching property 𝑃 (𝐴) that we aim
to prove, Facts is the ultimate product of the counterfactual-guided

logic exploration. The human investigator is trusted to take Facts

and use it to assess A’s responsibility for a harm.

Our method relies on an oracle interface, O𝐴 (·), into the decision
logic of𝐴. We specify factual queries as 𝑞 = (𝜑, 𝛽), pairing an input

constraint𝜑 and a behavior 𝛽 . Such a query asks whether the factual

program execution starting from the program state encoded by 𝜑

results in the agent behavior encoded by 𝛽 , or more formally...

for 𝜏 𝑓 s.t. 𝜏 𝑓 (𝑡) |= 𝜑 (𝐼) uniquely, does 𝜏 𝑓 |= 𝜑 (𝐼) →A,𝑡,ℓ 𝛽 (�̂�)?
We specify counterfactual queries as 𝑞 = (1∃, 𝜑, 𝛽), composed

of a ‘might’/‘would’ (existential/universal) indicator bit 1∃ , input
constraint 𝜑 , and behavior 𝛽 . Each such query asks whether there

exists a program execution (a might counterfactual) starting from

a program state encoded by 𝜑 that results in the agent behavior

encoded by 𝛽 , more formally...

if 1∃ , for ctx = (𝜏 𝑓 , 𝑡∗, 𝜑) does there exist 𝜏𝑐 𝑓 ∈ 𝑇
𝑐 𝑓

ctx such that

𝜏𝑐 𝑓 |= 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�);
or similarly, but now whether for all executions starting from the

program states encoded by 𝜑 (a would counterfactual)...

if¬1∃ , for ctx = (𝜏 𝑓 , 𝑡∗, 𝜑), whether for all 𝜏𝑐 𝑓 ∈ 𝑇
𝑐 𝑓

ctx it follows

that 𝜏𝑐 𝑓 |= 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�)?
This quite minimal information is sufficient for the oracle to resolve

the information needed to improve Facts. Note that as𝑇
𝑐 𝑓

ctx excludes

the factual trace as a valid continuance from 𝑡∗, it is not possible for
a counterfactual query to resolve (positively or negatively) on the

basis of the factual execution – only counterfactuals are considered.

An Example. Consider an investigator trying to understand the

facts under which the car in Figure 1 did, would, or might enter

the intersection. If 𝜑 of Equation 1 represents the critical moment

at which the car moved into the intersection, then the investigator

could query

𝑞1 = (𝜑, move = 1)

where move is a decision variable. If, for example, 𝑟1 = (1, __),
then Algorithm 1 will set

Facts = {(𝜏 𝑓 , 𝜑 →A,𝑡,ℓ move = 1)}

to capture the now confirmed fact that the car chose to move into

the intersection (rather than say, had a brake failure). Note that to

do so the investigator needs only to know the input constraints 𝜑

and the specific decision variable move . All other aspects of the

self-driving car’s decision logic is hidden by the oracle interface,

and the output is clear and interpretable answer to exactly the

question posed. Adaptively, the investigator might then decide to

skip Equation 2, and instead move on to querying using 𝜑 ′′ from
Equation 3, e.g.,

𝑞2 = (1∃, 𝜑′′, move = 0)

to ask whether under the family of counterfactuals 𝑇
𝑐 𝑓

ctx defined

by 𝜑 ′′ there exists a circumstance where the car would not have

entered the intersection. If then, for example, 𝑟2 = (1, M), where
the modelM encodes a concrete counterfactual scenario, the in-

vestigator can update

Facts← Facts ∪ {(M, 𝜑′′ 2→A,𝑡∗,ℓ move = 0)}

and continue on from there.

CSLAW ’24, March 12–13, 2024, Boston, MA, USA Judson et al.

Algorithm 1 Counterfactual-Guided Logic Exploration

1: 𝑇 𝑓 ← {𝜏 𝑓
1
, . . . , 𝜏

𝑓

𝑘
}, Facts← {}

2: while not done? do
3: if factual? then
4: (𝜏 𝑓 , 𝑡), 𝜑 ← start?(𝑇 𝑓 , 𝐼)
5: 𝛽 ← behavior?(𝑉)
6: 𝑟𝑖 = (𝑏,) ← O𝐴 (𝑞𝑖 = (𝜑, 𝛽))
7: if 𝑏 = 0

8: then Facts← Facts ∪ {(𝜏 𝑓 (𝑡), 𝜑 (𝐼) →A,𝑡,ℓ ¬𝛽 (�̂�))}
9: else Facts← Facts ∪ {(𝜏 𝑓 (𝑡), 𝜑 (𝐼) →A,𝑡,ℓ 𝛽 (�̂�))}
10: else
11: ctx = (𝜏 𝑓 , 𝑡∗, 𝜑), 𝐹 ← cf(𝑇 𝑓 , 𝐼)
12: 𝛽, 1∃ ← behavior?(𝑉)
13: 𝑟𝑖 = (𝑏, M) ← O𝐴 (𝑞𝑖 = (1∃, 𝜑, 𝛽, 𝐹))
14: if 1∃ = 0 then
15: if 𝑏 = 0

16: then Facts← Facts ∪ {(M, 𝜑 (𝐼) 2→A,𝑡∗,ℓ ¬𝛽 (�̂�))}
17: else Facts← Facts ∪ {(𝜏𝑐 𝑓

𝑗
(𝑡∗), 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�))}𝜏𝑐𝑓

𝑗
∈𝑇 𝑐𝑓

ctx

18: else
19: if 𝑏 = 0

20: then Facts← Facts ∪ {(𝜏𝑐 𝑓
𝑗
(𝑡∗), 𝜑 (𝐼) 2→A,𝑡∗,ℓ ¬𝛽 (�̂�))}𝜏𝑐𝑓

𝑗
∈𝑇 𝑐𝑓

ctx

21: else Facts← Facts ∪ {(M, 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�))}

The Method. We define the counterfactual-guided logic explo-

ration loop and oracle interface that together underlie soid in Algo-

rithms 1 and 2, where calls in italics? indicate manual interventions

that must be made by the investigator. The investigatory procedure

starts from the set of factual traces 𝑇 𝑓 = {𝜏 𝑓
1
, . . . , 𝜏

𝑓

𝑘
} observed

from 𝐴’s executions. At each iteration of the loop, the investigator

adaptively formulates and poses the next question in a sequence

Query = ⟨𝑞1, . . . , 𝑞𝑖 , . . .⟩. The responses Resp = ⟨𝑟1, . . . , 𝑟𝑖 , . . .⟩
are then used to build up the set Facts of trace properties regarding

𝐴’s decision making under both the 𝑇 𝑓
and the set of counterfac-

tual scenarios, 𝑇𝑐 𝑓 = {𝜏𝑐 𝑓
1
, . . . , 𝜏

𝑐 𝑓

𝑘 ′
}, defined within the 𝑞𝑖 by the

investigator. Each entry in Facts is rigorously proven by the verifi-

cation oracle O𝐴 (·), with access to the logical representation Π of

A as expressed by 𝐴. We leave to the investigator the decision to

terminate the investigatory loop, as well as any final judgement as

to the agent’s culpability. In §5 we explain the encodings Φ used

within Algorithm 2 in detail, and in our technical report [Judson

et al. 2023] prove that they correctly implement the semantics of

→A,𝑡,ℓ and 2→A,𝑡∗,ℓ as defined in §3.3.

Design Goals. We briefly highly how soid meets some critical

design goals to support principled analysis for legal accountability.

(1) The oracle design pushes the technical details of how A works

‘across the veil’, so that an investigator needs to know no more

than the meaning of the input/output API exposed by 𝐴 (over

the variables in 𝐼 and some subset of 𝐷 , respectively) in order

to construct a query 𝑞𝑖 and interpret the response 𝑟𝑖 ← O𝐴 (𝑞𝑖).
To this end, we designed the oracle query to place as minimal a

possible burden on the investigator.

(2) The method emphasizes adaptive construction of Facts, so that

the investigator may shape the 𝑖th query not just by considering

the questions ⟨𝑞1, . . . , 𝑞𝑖−1⟩ asked, but also using the responses
⟨𝑟1, . . . , 𝑟𝑖−1⟩ already received. We aim to put the agent on the

stand, not just send it a questionnaire. Crucial to this goal is to

return concrete traces from counterfactual queries, so that their

corresponding facts can help guide the construction of the next.

Using the ability of SMT solvers to return models for satisfiable

formulas, when 1∃ = 1 and there exists 𝜏𝑐 𝑓 ∈ 𝑇𝑐 𝑓

ctx such that

𝜏𝑐 𝑓 |= 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�), we are able to explicitly inform the

investigator of the fact (𝜏𝑐 𝑓 , 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�)). Conversely,
when 1∃ = 0 and 𝜑 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�) is not true for all 𝜏𝑐 𝑓 ∈
𝑇
𝑐 𝑓

ctx , we also can explicitly return the fact (𝜏𝑐 𝑓 , 𝜑 (𝐼) 2→A,𝑡∗,ℓ

¬𝛽 (�̂�)) for some counterexample 𝜏𝑐 𝑓 ∈ 𝑇𝑐 𝑓

ctx encoded by the

output modelM.

(3) The method is interpretable. When an investigator poses a ques-

tion, soid pushes everything ‘smart’ the method does across the

oracle interface to the verification, so that even non-technical

users can understand the relationship between query and re-

sponse. In a sense, our method benefits from a simple and

straightforward design, so that its process is direct and inter-

pretable to the investigators using it. As with a human on the

stand, we just want the answer to the question that was asked,

no more and no less. As this design goal describes what not to do
rather than what to do, we informally meet it by not introducing

unnecessary automation.

In general, we balance automation against interpretability, in order

to minimize the burden on the investigator: we want them to pick

SMT-based Oracles for Investigating Decisions CSLAW ’24, March 12–13, 2024, Boston, MA, USA

Algorithm 2 Oracle

Require: 𝑞𝑖 = (𝜑, 𝛽) or 𝑞𝑖 = (1∃, 𝜑, 𝛽, 𝐹)
1: (𝑐𝑡, {𝜋𝑎𝑏 }) ← SymExec(𝐴, 𝜑 (𝐼)) ⊲ 𝑐𝑡 is the branch count

2: Π ← ∨
𝑎∈[𝑛], 𝑏∈[𝑐𝑡] 𝜋𝑎𝑏

3: if |𝑞 | = 2 then
4: Φ← ¬

((
𝜑 (𝐼) ∧ Π(𝑉)

)
→ 𝛽 (�̂�)

)
5: (𝑏, M) ← SMT.isValid?(Φ)
6: else
7: if 𝑞.fst = 0 then
8: Φ← ¬

((
𝜑 (𝐼) ∧ ¬𝐹 (𝐼) ∧ Π(𝑉)

)
→ 𝛽 (�̂�)

)
9: (𝑏, M) ← SMT.isValid?(Φ)
10: else
11: Φ←

(
𝜑 (𝐼) ∧ ¬𝐹 (𝐼) ∧ Π(𝑉)

)
∧

12:

((
𝜑 (𝐼) ∧ ¬𝐹 (𝐼) ∧ Π(𝑉)

)
→ 𝛽 (�̂�)

)
13: (𝑏, M) ← SMT.isSat?(Φ)
14: return 𝑟𝑖 = (𝑏, M)

a critical moment and (family of) counterfactual scenarios, define a

behavior as a post-condition, and get push-button execution.

5 Representations and Queries
We discuss how we represent (counter)factual scenarios and queries

logically so that soid can resolve them using an SMT solver. For an

extended discussion of how see our full technical report [Judson

et al. 2023].

We specify a factual query as a tuple (𝜑, 𝛽), the former logical

formula specifying the inputs to the program at a critical decision

moment (as in Equation 1), the latter encoding a description of

the possible agent decision being investigated. Implicitly, 𝜑 defines

a factual scenario (𝜏 𝑓 , 𝑡, 𝜑), where 𝜑 encodes the program state

at that critical moment 𝜏 𝑓 (𝑡). Counterfactual queries are encoded
similarly, but with the additional of the existential indicator bit 1∃ .
They are also able to encode many different possible program exe-

cutions, captured by the notion of a family of counterfactuals 𝑇
𝑐 𝑓

ctx .

The last necessary statement required to invoke an SMT solver is

Π(𝑉), the decision logic of 𝐴 constrained to the scenario(s) implied

by 𝜑 . We generate Π(𝑉) dynamically given a (counter)factual query

using symbolic execution.

5.1 Representing Agents and Scenarios
We represent (counter)factual scenarios by formulas on the vari-

ables in 𝐼 so that soid can resolve them using an SMT solver.

Factuals. Factual scenarios are naturally defined such that every

input variable is constrained by an equality, together encoding

some factual state 𝜏 𝑓 (𝑡).
Definition 5.1. A factual scenario is a tuple (𝜏 𝑓 , 𝑡, 𝜑) s.t.
i) 𝜏 𝑓 (𝑡)

���
𝐼
|= 𝜑 (𝐼); and

ii) for all 𝜎 |𝐼 ≠ 𝜏 𝑓 (𝑡)
���
𝐼
, 𝜎 |𝐼 ̸ |= 𝜑 (𝐼).

In practice, a factual query is specified by a 𝜑 that has a unique

satisfying model over 𝐼 . Evaluating a factual scenario is functionally

equivalent to a concrete execution, since 𝜏 𝑓 is the only possible

program trace. We tie factual analysis into our framework for com-

pleteness, and because unlike traditional ‘opaque’ assertion-based

testing soid supports writing complex behavioral conditions on

all of 𝑉 , including both internal and output variables. Addition-

ally, our factual representations also naturally generate circuits for

(zero-knowledge) proofs-of-compliance, another promising tool for

algorithmic accountability [Kroll et al. 2017; Ozdemir et al. 2022].

Counterfactuals. A counterfactual is a formula which removes

the original factual 𝜏 𝑓 as a valid model, 𝜑 (𝐼) ≡ 𝜑 (𝐸) ∧ ¬𝐹 (𝐼).

Definition 5.2. 1. A counterfactual scenario is a tuple (𝜏𝑐 𝑓 =

(𝜏 𝑓 , 𝜏𝑝𝑝 , 𝑡∗), 𝜑, 𝐹) such that
i) 𝜏𝑝𝑝 (𝑡∗) |𝐼 |= 𝜑 (𝐼) ∧ ¬𝐹 (𝐼);
ii) 𝜏 𝑓 (𝑡∗)

���
𝐼
|= 𝐹 (𝐼); and

2. A family of counterfactual scenarios is a tuple (𝑇𝑐 𝑓

ctx , 𝜑, 𝐹)
where the set 𝑇𝑐 𝑓

ctx contains every 𝜏𝑐 𝑓 = (𝜏 𝑓 , 𝜏𝑝𝑝 , 𝑡∗) such that
𝜏𝑝𝑝 |𝐼 |= 𝜑 (𝐼) ∧¬𝐹 (𝐼) and (𝜏𝑐 𝑓 , 𝜑, 𝐹) is a counterfactual scenario.

In practice, a counterfactual query is specified by a (1∃, 𝜑, 𝐹) tuple
where 𝜏 𝑓 (𝑡∗) is excluded as a model by the negation of the formula

𝐹 (𝐼) tightly encoding it.

Behaviors. A behavior is just an arbitrary formula over �̂� .

Definition 5.3. A behavior is a formula 𝛽 (�̂�).

Decision Logic. We leave the more involved definition of the

decision logic Π(𝑉) to our technical report [Judson et al. 2023].

Roughly, it is a formula representing the possible executions of 𝐴

under the preconditions specified in the (family of counter)factual

scenarios, and is generated by symbolic execution of 𝐴.

5.2 Resolving (Counter)factual Queries
Given these representations, we can encode the semantics of our

factual (→A,𝑡,ℓ) and counterfactual (2→A,𝑡∗,ℓ) operators as SMT

queries in the logic of QF_FPBV [Barrett et al. 2021]. To conclude the
following theorem we assume correctness of symbolic execution,

i.e., that Π(𝑉) exactly represents the possible executions of𝐴 under

𝜑 (𝐼) up to some step ℓ ≤ ℓmax. For proofs of the results in this

section see our technical report [Judson et al. 2023].

Theorem 5.4. Let 𝑞𝑖 = (𝜑, 𝛽) be a factual query, and (𝜏 𝑓 , 𝑡, 𝜑)
be a corresponding factual scenario. Then

Φ ≡
(
𝜑 (𝐼) ∧ Π(𝑉)

)
→ 𝛽 (�̂�)

is valid iff 𝜏 𝑓 |= 𝜑 (𝐼) →A,𝑡,ℓ 𝛽 (�̂�).

A similar result holds for both types of counterfactual query.

Theorem 5.5. Let 𝑞𝑖 = (1∃, 𝜑, 𝛽) be a counterfactual query, and
(𝑇𝑐 𝑓

ctx , 𝜑, 𝐹) be a corresponding family of counterfactual scenarios.
Then

i) for ¬1∃ ,

Φ ≡
(
𝜑 (𝐼) ∧ ¬𝐹 (𝐼) ∧ Π(𝑉)

)
→ 𝛽 (�̂�)

is valid iff

∀𝜏𝑐 𝑓 ∈ 𝑇𝑐 𝑓

ctx . 𝜏
𝑐 𝑓 |= 𝜑 (𝐼) ∧ ¬𝐹 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�) .

CSLAW ’24, March 12–13, 2024, Boston, MA, USA Judson et al.

Figure 2: Still of the soid GUI (with a small section cut out for brevity). At top left is the critical moment from the program logs
as chosen by the investigator. At bottom right are the counterfactual conditions the investigator has specified.

ii) for 1∃ ,

Φ ≡
(
𝜑 (𝐼) ∧ ¬𝐹 (𝐼) ∧ Π(𝑉)

)
∧((
𝜑 (𝐼) ∧ ¬𝐹 (𝐼) ∧ Π(𝑉)

)
→ 𝛽 (�̂�)

)
is satisfiable iff

∃𝜏𝑐 𝑓 ∈ 𝑇𝑐 𝑓

ctx . 𝜏
𝑐 𝑓 |= 𝜑 (𝐼) ∧ ¬𝐹 (𝐼) 2→A,𝑡∗,ℓ 𝛽 (�̂�) .

6 The soid Tool: Architecture and Case Studies
We implemented the counterfactual-guided logic exploration loop

in our tool soid, for SMT-based Oracle for Investigating Decisions.
The soid tool is implemented in Python, and invokes the Z3 SMT

solver [Moura and Bjørner 2008] for resolving queries. To begin, and

outside of the scope of soid, the investigator uses their knowledge
of the harm under investigation to extract the factual trace 𝜏 𝑓 from

the logging infrastructure of 𝐴. Note that our tool assumes that

both the 𝜏 𝑓 and𝐴 used in the analysis correspond to the real-world

execution. Accountable logging [Yoon and Shao 2019] and verifi-

able computation [Parno et al. 2013] can bolster confidence in these

assumptions, and further that the program execution pathways

being analyzed by soid are those applicable in deployment and are

not being manipulated by a ‘defeat device’ [Contag et al. 2017]. At

present soid also assumes deterministic programs, though symbolic

execution of randomized programs is an active area of formal meth-

ods research with developing tooling that could in the future be

used to extend our method [Susag et al. 2022]. After extracting the

trace the investigator specifies the (counter)factual query 𝜑 (𝐼) and
behavior 𝛽 (�̂�) using a Python library interface. Upon invocation,

soid symbolically executes 𝐴 to generate Π(𝑉). After the symbolic

execution completes, soid formulates Φ as per §5 and invokes Z3 to

resolve the query. It then outputs the finding, as well as any model

M in the event one exists due to a failed verification or successful

counterfactual generation.

6.1 Three Cars on the Stand: A Case Study
In this section, we evaluate soid on the crash example from §2 (and

Figure 1). We pose and resolve the queries from the example:

SMT-based Oracles for Investigating Decisions CSLAW ’24, March 12–13, 2024, Boston, MA, USA

timings (avg. 𝑛 = 10)

model output symbolic (𝑠) solving (𝑠) total (𝑠) paths

→A,𝑡,ℓ 𝜑𝑓 𝑎𝑐𝑡 , moved?

standard ✔ 3.575 4.290e-03 4.162 1

impatient ✔ 3.607 4.317e-03 4.193 1

pathological ✔ 3.626 4.249e-03 4.212 1

2→A,𝑡∗,ℓ 𝜑∗ ≡ 𝜑𝑓 𝑎𝑐𝑡 [(agent1_signal_choice = 2) ↦→ (agent1_signal_choice ∈ {0, 1, 2})], ever not move?

standard ✔ 4.015 2.428 7.849 3

impatient ✘ 3.919 2.334 7.673 3

pathological ✘ 3.966 2.352 7.718 3

2→A,𝑡∗,ℓ 𝜑∗ [(agent1_pos_x = 1.376) ↦→ (1.0 ≤ agent1_pos_x ≤ 1.5)], ever not move?

standard ✔ 133.0 54.40 195.2 19

impatient ✘ 126.0 4.648 138.5 19

pathological ✔ 254.2 17.47 279.5 19

timings (avg. 𝑛 = 10)

model output symbolic (𝑠) solving (𝑠) total (𝑠) paths

→A,𝑡,ℓ 𝜑𝑓 𝑎𝑐𝑡 , low risk?

dt ✔ 0.746 4.896e-03 0.812 1

2→A,𝑡∗,ℓ 𝜑∗ ≡ 𝜑𝑓 𝑎𝑐𝑡 [(weight = 249.973) ↦→ ⊤], ever high risk?

dt ✔ 2.277 1.655 4.009 2

Table 1: Experimental results for our (top) car crash and (bottom) decision tree misclassification case studies.

at 𝑡∗
1

2→ Could a different turn signal have led A to remain

stationary?

2→ If A had arrived before the other car, and that other

car was not signaling a turn, would A have waited? (e.g.,
to ‘bait’ the other car into passing in front of it?)

in a simulated driving environment, and show that soid is able to

produce Facts that distinguish between three different machine-

learned self-driving car agents.

For our environment we employ Gym-Duckietown [Chevalier-

Boisvert et al. 2018] with a simple intersection layout. A rendering

of our example crash in our environment is given in Figure 1. For

our three agents, we used the same general C codebase, but used re-

inforcement learning – specifically Q-learning [Watkins and Dayan

1992] – to train three different versions of the decision model it

invokes, each based on a different reward profile. Informally we

deemed these reward profiles ‘standard’, ‘impatient’ and ‘patholog-

ical’. The ‘standard’ profile is heavily penalized for crashing, but

also rewarded for speed and not punished for moving without the

right of way, so long as it is ‘safe’. The ‘impatient’ profile is only

rewarded for speed. The ‘pathological’ profile is rewarded signifi-

cantly for crashes, and minimally for speed to promote movement

over nothing. The simulation environment is completely invisible

to soid, which only analyzes program executions on the basis of its

code and logs.

On top of Gym-Duckietown we designed and implemented a

web GUI to enable non-expert interaction with soid. GUIs that auto-
matically generate representations of the driving environment are

already deployed into semi-autonomous vehicles, such as those pro-

duced by Tesla. While simulating the environment, a drag-and-drop

and button interface allows the user to manipulate the environ-

ment. by, e.g., introducing new cars, manipulating a car’s position

or angle, or changing a car’s destination or which car possesses

the right of way. After a factual trace plays out, a slider allows the

investigator to select a step of the execution, before a drop-down

and button interface allows specifying a counterfactual family and

behavior (whether or not the car moved). We provide still images

of the GUI’s interfaces in Figure 2.

Results. We provide a selection of the results of our benchmarks,

summarized in Table 1.We refer to our technical report [Judson et al.

2023] full the full set of benchmarks. All statistics were gathered on

an Intel Xeon CPU E5-2650 v3 @ 2.30GHz workstation with 64 GB

of RAM. Each heading in Table 1 specifies a set of constraints 𝜑 (𝐼),
and implicitly a behavior 𝛽 (�̂�). The rows list the trained model

invoked within 𝐴, the output of the evaluations, average timings,

and the total number of feasible paths. Note that the symbolic
and solving timings do not exactly sum to the total timing, due

to some overhead. In our full benchmarks we find most of our

queries resolved within < 20𝑠 , providing effective usability, though

as Table 1 shows the inclusion of a floating-point range query to

notably increase the cost of solving, with a ∼6x increase in the

number of feasible program paths and a ∼20-30x increase in the

time required.

6.2 Health Risk Decision Tree Misclassification
To demonstrate that soid is more general in application than to

just cyberphysical systems, we also consider a second motivating

CSLAW ’24, March 12–13, 2024, Boston, MA, USA Judson et al.

1 int traverse(Node *N, double *fv) {

2 if (N->class >= 0) return N->class;

3 return (fv[N->tidx] <= N->test)

4 ? traverse(N->tchild , fv)

5 : traverse(N->fchild , fv);

6 }

7

8 int classify(Node *root , double *data) {

9 double bmi = data [6] / pow(data[5], 2);

10 double fv[8] = {

11 data[0], data[1], data[2], data[3],

12 data[4], bmi , data[7], data [8]

13 };

14

15 return traverse(root , fv);

16 }

Figure 3: Our decision tree example. At top, the relevant decision subtree for a misclassification based on health data, with the
incorrect path taken in red – and the correct branch missed in blue – as the unit conversion bug leads to a significantly
smaller BMI input than is correct. At bottom, the (otherwise correct) decision tree inference logic in C.

example of incorrect statistical inference. We train a decision tree

to infer the health risk status of individuals using the Pima Indians

dataset, a classic example in counterfactuals due to [Wachter et al.

2017]. Notably, we consider a program 𝐴 with an implicit unit

conversion bug: 𝐴 computes the BMI input to the decision tree

using the height and weight parameters from its input. However,

it is written to expect metric inputs in 𝑘𝑔 and𝑚, while the inputs

are instead provided in the imperial 𝑖𝑛 and 𝑙𝑏. This is a flaw of the

software system in general. Both the decision tree and program

themselves are correct, but end-to-end the system misclassifies

many inputs, as for the same quantities (𝑘𝑔/𝑚2) ≫ (𝑙𝑏/𝑖𝑛2).
Unlike statistical counterfactual methods like those of [Mothilal

et al. 2020; Wachter et al. 2017] which only analyze the (correct)

decision model, the end-to-end nature of soid allows it to analyze

everything, including the conversion bug. Figure 3 displays the

inference code and incorrect decision due to the conversion error.

We then ran a small case study on this decision tree health

risk misclassification example. The results of our benchmarks are

summarized in Table 1, and were gathered on the same Intel Xeon

CPU E5-2650 v3 @ 2.30GHz workstation with 64 GB of RAM. In

additional to a simple factual verification query as a baseline, we

posed a single counterfactual query:

at 𝑡∗

2→ Does there exist a weight for which the instance is

classified as high risk?

The results show soid is able to efficiently resolve the counterfactual

in the positive.

Acknowledgments
The authors thank Gideon Yaffe for many helpful conversations,

Man-Ki Yoon for his assistance in implementing an earlier simu-

lated driving environment, and Cristian Cadar and Daniel Liew

for their guidance on successfully using Klee-Float for symbolic

execution of our experiments. This work was supported by the

Office of Naval Research (ONR) of the United States Department

of Defense through a National Defense Science and Engineering

Graduate (NDSEG) Fellowship, by the State Government of Styria,

Austria – Department Zukunftsfonds Steiermark, by EPSRC grant

no EP/R014604/1, and by NSF awards CCF-2131476, CCF-2106845,

and CCF-2318974. The authors would also like to thank the Isaac

Newton Institute for Mathematical Sciences, Cambridge, for sup-

port and hospitality during the programme Verified Software where

work on this paper was undertaken.

References
[n. d.]. .Memorandum Opinion, Thaler v. Shira Perlmutter et al. (2023) (No. 1:22-cv-

01564-BAH) https://storage.courtlistener.com/recap/gov.uscourts.dcd.243956/gov.

uscourts.dcd.243956.24.0_2.pdf.

Rediet Abebe, Moritz Hardt, Angela Jin, John Miller, Ludwig Schmidt, and Rebecca

Wexler. 2022. Adversarial Scrutiny of Evidentiary Statistical Software. In ACM
Conference on Fairness, Accountability, and Transparency (FAccT ’22). 1733–1746.

Amina Adadi and Mohammed Berrada. 2018. Peeking Inside the Black-Box: a Survey

on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138–52160.
Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. In

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI ’18), Vol. 32.
Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. May 23rd, 2016. Machine

Bias. ProPublica (May 23rd, 2016). https://www.propublica.org/article/machine-

bias-risk-assessments-in-criminal-sentencing.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot,

Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina,

Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Explainable Artificial

Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward

Responsible AI. Information Fusion 58 (2020), 82–115.

Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar,

Jakob Piribauer, and Robin Ziemek. 2021a. From Verification to Causality-based

Explications. arXiv preprint arXiv:2105.09533 (2021).
Christel Baier, Florian Funke, and Rupak Majumdar. 2021b. A Game-Theoretic Account

of Responsibility Allocation. arXiv preprint arXiv:2105.09129 (2021).
Christel Baier, Florian Funke, and Rupak Majumdar. 2021c. Responsibility Attribution

in Parameterized Markovian Models. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 11734–11743.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene

Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput. Surv.
51, 3, Article 50 (2018).

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2021. The SMT-LIB Standard: Version

2.6.

Helen Beebee and Peter Menzies. 2019. Counterfactual Theories of Causation. In

Stanford Encyclopedia of Philosophy, Edward N. Zalta (Ed.). Stanford University.

Michael Bratman. 1987. Intention, Plans, and Practical Reason.

Michael E. Bratman, David J. Israel, and Martha E. Pollack. 1988. Plans and Resource-

Bounded Practical Reasoning. Computational intelligence 4, 3 (1988), 349–355.
Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs. In

USENIX Symposium on Operating Systems Design and Implementation (OSDI ’08).
209–224.

Filip Cano Córdoba, Samuel Judson, Timos Antonopoulos, Katrine Bjørner, Nicholas

Shoemaker, Scott J. Shapiro, Ruzica Piskac, and Bettina Könighofer. 2023. Analyzing

Intentional Behavior in Autonomous Agents under Uncertainty. In Proceedings of
the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23.
372–381.

https://storage.courtlistener.com/recap/gov.uscourts.dcd.243956/gov.uscourts.dcd.243956.24.0_2.pdf
https://storage.courtlistener.com/recap/gov.uscourts.dcd.243956/gov.uscourts.dcd.243956.24.0_2.pdf
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

SMT-based Oracles for Investigating Decisions CSLAW ’24, March 12–13, 2024, Boston, MA, USA

Maxime Chevalier-Boisvert, Florian Golemo, Yanjun Cao, Bhairav Mehta, and Liam

Paull. 2018. Duckietown Environments for OpenAI Gym. https://github.com/

duckietown/gym-duckietown.

Hana Chockler and Joseph Y. Halpern. 2004. Responsibility and Blame: A Structural-

Model Approach. Journal of Artificial Intelligence Research) 22 (2004), 93–115.
Maria Christakis, Hasan Ferit Eniser, Holger Hermanns, Jörg Hoffmann, Yugesh

Kothari, Jianlin Li, Jorge A Navas, and Valentin Wüstholz. 2021. Automated Safety

Verification of Programs Invoking Neural Networks. In International Conference on
Computer Aided Verification (CAV ’21). Springer, 201–224.

Philip R. Cohen and Hector J. Levesque. 1990. Intention is Choice with Commitment.

Artificial Intelligence 42, 2-3 (1990), 213–261.
David Cole. 2020. The Chinese Room Argument. In The Stanford Encyclopedia of

Philosophy, Edward N. Zalta (Ed.). Stanford University.

Moritz Contag, Guo Li, Andre Pawlowski, Felix Domke, Kirill Levchenko, Thorsten

Holz, and Stefan Savage. 2017. How They Did It: An Analysis of Emission De-

feat Devices in Modern Automobiles. In IEEE Symposium on Security and Privacy
(Oakland ’17). IEEE, 231–250.

Jeffrey Dastin. 2018. Amazon scraps secret AI recruiting tool that showed bias against

women. Reuters (2018). https://www.reuters.com/article/us-amazon-com-jobs-

automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-

against-women-idUSKCN1MK08G.

Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh Sinha. 2015.

Program Actions as Actual Causes: A Building Block for Accountability. In 2015
IEEE 28th Computer Security Foundations Symposium (CSF ’15). IEEE, 261–275.

Tim W. Dornis. 2020. Artificial Creativity: Emergent Works and the Void in Current

Copyright Doctrine. Yale JL & Tech. 22 (2020), 1.
Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravan-

bakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. 2019. VerifAI: A Toolkit

for the Formal Design and Analysis of Artificial Intelligence-based Systems. In

Intentional Conference on Computer Aided Verification (CAV ’19). Springer, 432–442.
James Edwards. 2021. Theories of Criminal Law. In The Stanford Encyclopedia of

Philosophy, Edward N. Zalta (Ed.). Stanford University.

Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright. 2011. Towards a For-

mal Model of Accountability. In Proceedings of the 2011 New Security Paradigms
Workshop. 45–56.

Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright. 2020. Accountability in

Computing: Concepts and Mechanisms. Foundations and Trends® in Privacy and
Security 2, 4 (2020), 247–399.

Javier Garcıa and Fernando Fernández. 2015. A Comprehensive Survey on Safe Rein-

forcement Learning. Journal of Machine Learning Research 16, 1 (2015), 1437–1480.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaud-

huri, and Martin Vechev. 2018. AI
2
: Safety and Robustness Certification of Neural

Networks with Abstract Interpretation. In 2018 IEEE Symposium on Security and
Privacy (S&P ’18). 3–18.

Bishwamittra Ghosh and Kuldeep S. Meel. 2019. IMLI: An Incremental Framework for

MaxSAT-based Learning of Interpretable Classification Rules. In Proceedings of the
2019 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’19). 203–210.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti,

and Dino Pedreschi. 2018. A Survey of Methods for Explaining Black Box Models.

ACM Computing Surveys (CSUR) 51, 5 (2018), 1–42.
Gabriel Hallevy. 2013. When Robots Kill: Artificial Intelligence Under Criminal Law.

UPNE.

Joseph Y. Halpern and Judea Pearl. 2005a. Causes and Explanations: A Structural-

Model Approach. Part I: Causes. The British Journal for the Philosophy of Science 56,
4 (2005), 843–887.

Joseph Y. Halpern and Judea Pearl. 2005b. Causes and Explanations: A Structural-

Model Approach. Part II: Explanations. The British Journal for the Philosophy of
Science 56, 4 (2005), 889–911.

Samuel Judson, Matthew Elacqua, Filip Cano Córdoba, Timos Antonopoulos, Bettina

Könighofer, Scott J Shapiro, and Ruzica Piskac. 2023. ‘Put the Car on the Stand’:

SMT-based Oracles for Investigating Decisions. arXiv preprint arXiv:2305.05731
(2023).

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel

Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill,

Mykel J. Kochenderfer, and Clark Barrett. 2019. The Marabou Framework for

Verification and Analysis of Deep Neural Networks. In International Conference on
Computer Aided Verification (CAV ’19). 443–452.

Joshua A. Kroll, Joanna Huey, Solon Barocas, Edward W. Felten, Joel R. Reidenberg,

David G. Robinson, and Harlan Yu. 2017. Accountable Algorithms. University of
Pennsylvania Law Review 165, 3 (2017), 633–705.

Robert Künnemann, Ilkan Esiyok, and Michael Backes. 2019. Automated Verifica-

tion of Accountability in Security Protocols. In 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF ’19). IEEE, 397–39716.

Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2010. Accountability: Definition

and Relationship to Verifiability. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS ’10). 526–535.

Legal Information Institute. 2023. Respondeat Superior. https://www.law.cornell.edu/

wex/respondeat_superior.

Edward H Levi. 1947. An Introduction to Legal Reasoning. U. Chi. L. Rev. 15 (1947),
501.

David Lewis. 2013. Counterfactuals. John Wiley & Sons. Originally published in 1973.

Michael Moore. 2019. Causation in the Law. In Stanford Encyclopedia of Philosophy,
Edward N. Zalta (Ed.). Stanford University.

Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining Machine

Learning Classifiers Through Diverse Counterfactual Explanations. In ACM Con-
ference on Fairness, Accountability, and Transparency (FAT∗ ’20). 607–617.

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’08). 337–340.

Vincent C. Müller. 2023. Ethics of Artificial Intelligence and Robotics. In The Stanford
Encyclopedia of Philosophy, Edward N. Zalta and Uri Nodelman (Eds.). Stanford

University.

Alex Ozdemir, Fraser Brown, and Riad S Wahby. 2022. CirC: Compiler Infrastructure

for Proof Systems, Software Verification, and more. In IEEE Symposium on Security
and Privacy (Oakland ’22). 2248–2266.

Paulo Henrique Padovan, Clarice Marinho Martins, and Chris Reed. 2023. Black is the

New Orange: How to Determine AI Liability. Artificial Intelligence and Law 31, 1

(2023), 133–167.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio: Nearly

Practical Verifiable Computation. In 2013 IEEE Symposium on Security and Privacy.
IEEE, 238–252.

Anand S. Rao and Michael P. Georgeff. 1991. Modeling Rational Agents Within a

BDI-Architecture. KR 91 (1991), 473–484.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An Abstract

Domain for Certifying Neural Networks. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–30.

Lauren Smiley. 2022. ‘I’m the Operator’: The Aftermath of a Self-Driving Tragedy.

Wired Magazine (2022). https://www.wired.com/story/uber-self-driving-car-fatal-

crash/.

William Starr. 2021. Counterfactuals. In The Stanford Encyclopedia of Philosophy,
Edward N. Zalta (Ed.). Stanford University.

Guolong Su, Dennis Wei, Kush R. Varshney, and Dmitry M. Malioutov. 2015. In-

terpretable Two-Level Boolean Rule Learning for Classification. arXiv preprint
arXiv:1511.07361 (2015).

Zachary Susag, Sumit Lahiri, Justin Hsu, and Subhajit Roy. 2022. Symbolic Execution

for Randomized Programs. Proceedings of the ACM on Programming Languages 6,
OOPSLA (2022), 1583–1612.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual Expla-

nations Without Opening the Black Box: Automated Decisions and the GDPR.

Harvard Journal of Law & Technology 31 (2017), 841.

Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8

(1992), 279–292.

Man-Ki Yoon and Zhong Shao. 2019. ADLP: Accountable Data Logging Protocol

for Publish-Subscribe Communication Systems. In International Conference on
Distributed Computing Systems (ICDCS ’19). IEEE, 1149–1160.

https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.law.cornell.edu/wex/respondeat_superior
https://www.law.cornell.edu/wex/respondeat_superior
https://www.wired.com/story/uber-self-driving-car-fatal-crash/
https://www.wired.com/story/uber-self-driving-car-fatal-crash/

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Motivation
	2.1 Legal Accountability for ADMs

	3 Technical Background
	3.1 Programs and Traces
	3.2 SMT-based Program Analysis
	3.3 Counterfactual Reasoning

	4 Formal Reasoning for Accountability
	5 Representations and Queries
	5.1 Representing Agents and Scenarios
	5.2 Resolving (Counter)factual Queries

	6 The soid Tool: Architecture and Case Studies
	6.1 Three Cars on the Stand: A Case Study
	6.2 Health Risk Decision Tree Misclassification

	Acknowledgments
	References

